Munich Personal RePEc Archive

Estimation and model specification testing in nonparametric and semiparametric econometric models

Gao, Jiti and King, Maxwell (2003): Estimation and model specification testing in nonparametric and semiparametric econometric models.

[img]
Preview
PDF
MPRA_paper_11989.pdf

Download (349kB) | Preview

Abstract

This paper considers two classes of semiparametric nonlinear regression models, in which nonlinear components are introduced to reflect the nonlinear fluctuation in the mean. A general estimation and testing procedure for nonparametric time series regression under the strong-mixing condition is introduced. Several test statistics for testing nonparametric significance, linearity and additivity in nonparametric and semi-parametric time series econometric models are then constructed. The proposed test statistics are shown to have asymptotic normal distributions under their respective null hypotheses. Moreover, the proposed testing procedures are illustrated by several simulated examples. In addition, one of the proposed testing procedures is applied to a continuous-time model and implemented through a set of the US Federal interest rate data. Our research suggests that it is unreasonable to assume the linearity in the drift for the given data as required by some existing studies.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.