Tsimpanos, Apostolos and Tsimbos, Cleon and Kalogirou, Stamatis (2018): Assessing spatial variation and heterogeneity of fertility in Greece at local authority level.
Preview |
PDF
MPRA_paper_100406.pdf Download (1MB) | Preview |
Abstract
In the absence of spatial fertility analysis for Greece this paper aims at assessing spatial variations and underlying relationships between fertility and selected socio-demographic indicators at local authority level. The analysis is based on the 2001 census data for the 325 local authorities of the country. The results reveal the presence of significant spatial autocorrelation and the existence of spatial heterogeneity of structural interrelationship between fertility and predictors. The application of local models out-performs the standard OLS approach. However, the relationship between socioeconomic indicators and fertility is not always clear and further investigation is needed.
Item Type: | MPRA Paper |
---|---|
Original Title: | Assessing spatial variation and heterogeneity of fertility in Greece at local authority level |
Language: | English |
Keywords: | Greece; Fertility; Spatial Heterogeneity; Spatial Dependence; Local Models; GWR |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions J - Labor and Demographic Economics > J1 - Demographic Economics > J13 - Fertility ; Family Planning ; Child Care ; Children ; Youth |
Item ID: | 100406 |
Depositing User: | Mr Apostolos Tsimpanos |
Date Deposited: | 15 May 2020 05:11 |
Last Modified: | 15 May 2020 05:11 |
References: | Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht, Netherlands: Kluwer Academic Publishers. Anselin, L. (1995). Local indicators of spatial association – LISA. Geographical Analysis 27(2): 93-115. Anselin L (2001). Spatial effects in econometric practice in environmental and resource economics. American Journal of Agricultural Economics 83(3): 705-710. Anselin, L. (2004). GeoDa 0.95i Release Notes. Spatial Analysis Laboratory (SAL). Department of Agricultural and Consumer Economics. Urbana-Champaign, IL: University of Illinois. Anselin L. and Griffith D. A. (1988). Do Spatial Effects Really Matter in Regression Analysis? Papers of Regional Science Association 65: 11-34. Bagheri N, Holt A., and Benwell G.L. (2009). Using Geographically Weighted Regression to Validate Approaches for Modelling Accessibility to Primary Health Care. Applied Spatial Analysis and Policy 2(3): 177-194. Basten S., Huinink J., and Klüsener S. (2012). Spatial Variation of Sub-national Fertility Trends in Austria, Germany and Switzerland. Comparative Population Studies 36 (2-3): 573-614. Bijak, J, Kupiszewska, D., and Kupiszewski, M. (2008). Replacement Migration Revisited, Simulations of the Effects of Selected Population and Labor Market Strategies for the Ageing Europe, 2002-2052. Population Research and Policy Review 27(3): 321-342. Breusch, T. and Pagan, A. (1979). A Simple Test of Heteroskedasticity and Random Coefficient Variation. Econometrica 47(5): 1287-1294. Brunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis 28(4): 281-298. Brunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1998). Geographically weighted regression – modelling spatial non-stationarity. The Statistician 47(3): 431-443. Brunsdon, C., Fotheringham, A. S., and Charlton, M. E. (1999). Some Notes on Parametric Significance Tests For Geographically Weighted Regression. Journal of Regional Science 39(3): 497-524. Burch T. K. and Gendell M. (1970). Extended Family Structure and Fertility: Some Conceptual and Methodological Issues. Journal of Marriage and Family 32(2): 227-236. de Castro, M.C. (2007). Spatial Demography: An Opportunity to Improve Policy Making at Diverse Decision Levels. Population Research and Policy Review 26(5): 477-509. Cliff, A. and Ord, J. K. (1972). Testing for Spatial Autocorrelation among Regression Residuals. Geographical Analysis 4(3): 267-284. Cliff, A.D. and J.K. Ord. (1981). Spatial Processes. London: Pion Press. Cleveland W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74(368): 829-836. Cleveland W. S, Devlin S. J, (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83(403): 596-610. Coleman, D. (2005). Facing the 21st century, New developments, continuing problems. In: Macura M., McDonald A.L. and Haug W. (eds.). The new Demographic Regime, Population Challenges and Policy Responses. Geneva: United Nations: pp. 45-56. ELSTAT (2011). Statistics [electronic resource]. Greece: Hellenic Statistical Authority. http://www.statistics.gr. Fotheringham, A. S., Brunsdon, C., and Charlton, M. E. (2002). Geographically weighted regression: the analysis of spatially varying relationships. Chichester: John Wiley. Fotheringham, A. S., Charlton, M. E., and Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A 30(11): 1905-1927. Frejka, T. and Sardon, J.P. (2004). Childbearing Prospects in Low-Fertility Countries: A Cohort Analysis. Dordrecht: Kruwer Academic Publishers. Guilmoto C. Z. and Rajan S. I. (2001). Spatial Patterns of Fertility Transition in Indian Districts. Population and Development Review 27(4): 713-738. Hank K. (2001). Regional Fertility Differences in West Germany: An Overview of the Literature and Recent Descriptive Findings. International Journal of Population Geography 7(4): 243-257. Hordijk L. (1979). Problems in Estimating Econometric Relations in Space. Papers in Regional Science 42(1): 99-115. Hurvich, C. M., Simonoff J. S., and Tsai C-L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society Series B 60(2): 271-293. Isik, O. and Pinarcioglu, M. M. (2006). Geographies of transitions: a geographically weighted regression approach to regional fertility differences in Turkey. European Journal of Population 22(4): 399-421. Jarque, Carlos M. and Bera, Anil K. (1987). A test for normality of observations and regression residuals. International Statistical Review 55(2): 163–172. Kalogirou, S. and Hatzichristos, T. (2007). Α spatial modelling framework for income estimation. Spatial Economic Analysis 2(3): 297–316. Kalogirou, S., Tragaki, A. and Tsimbos, C. (2011). Spatial inequalities in income, development and poverty in Greece, Research Report (in Greek), John S. Latsis Public Institute. Kamata K., Iwasawa M., and Tanaka K. (2010). Spatial Variations in Fertility: Geographically Weighted Regression Analysis for Town-and-Village-level TFR in Japan. Paper presented at the Annual Meeting of Population Association of America, Dallas, Texas, April 15-17 2010. Available on line from: http//paa2010.princeton.edu/doenload.aspx?sumbmmisionID=100780. Koenker, R. and Bassett, J. (1982). Robust tests for Heteroskedasticity based on Regression Quantiles. Econometrica 50(1): 43-61. Kohler, H-P., Billari, F.C., and Ortege, J.A. (2002). The emergence of lowest-low fertility in Europe during the 1900s. Population and Development Review 28(4): 641-680. Kohli, K. L. (1977). Regional variations of fertility in Iraq and factors affecting it. Journal of Biosocial Science 9: 175-182. Kulu H. (2005). Fertility and Spatial Mobility: Evidence from Austria. Rostock: Max Planck Institute for Demographic Research (MPIDR Working Paper, WP 2005-002). Available on line at www.demogr.mpg.de/papers/working/wp-2005-002.pdf LeSage, J. and Pace, R. (2009). Introduction to Spatial Econometrics. Chapman and Hall. Lesthaeghe, R. and Van de Kaa, D. (1986). Twee demografische transities? In Lesthaeghe, R. and Van de Kaa, D. (eds). Bevolking: Groei en Krimp, Deventer, Van Loghum Slaterus: pp.9-24. Li W. L. (1973). Temporal and Spatial Analysis of Fertility Decline in Taiwan. Population Studies 27(1): 97-104. Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika 37(1): 17-23. Muniz J. (2009). Spatial dependence and heterogeneity in ten years fertility decline in Brazil. Population Review 48(2): 32–65. Paez, A., Uchida, T., and Miyamoto, K. (2002a). A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity. Environment and Planning A 34(4): 733-754. Paez, A., Uchida, T., and Miyamoto, K. (2002b). A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests. Environment and Planning A 34(4): 883-904. Pandit K. (1992). Regional Fertility Differentials and the Effect of Migration: An Analysis of U.S. State-level Data. Geographical Analysis 24(4): 352-364. Perez A. E. (1991). An analysis of the effects of fertility on women’s spatial mobility in the Philippines. Asia Pacific Population Journal 6(4): 35-66. Presser H. B. and Baldwin W. (1980). Child- Care as a Constraint on Employment: Prevalence, Correlates, and Bearing on the Work and Fertility Nexus. American Journal of Sociology 85(5): 1202-1213. Rawling, J. O., Pantula, S. G., and Dickey D. A. (1998). Applied Regression Analysis: A Research Edition. New York: Springer. Rowland D. T. (2006). Demographic methods and concepts. Oxford: Oxford University Press. Schmertmann C.P., Potter J.E., and Cavenaghi S.M. (2008). Exploratory Analysis of Spatial Patterns in Brazil’s Fertility Transition. Population Research and Policy Review 27(1): 1-15. Siegel J. S. and Swanson, D. A. (2004). The Methods and Materials of Demography. New York: Elsevier – Academic Press. Sobotka, T. (2008). The diverse faces of the Second Demographic Transition in Europe. Demographic Research 19: 171-224. Symeonidou H., Douligeris V., Kappi H., Magdalinos M., Maratou-Alinbranti L., Balourdos D., Pappas P., Samartzi M. (1997). Socio-economic factors affecting fertility in Greece and comparative analysis between areas. National Centre of Social Research, Volume B. In Greek, Summary in English, Athens: EKKE. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography 46(2): 234-240. Tsimbos, C. (2006). The Impact of Migration on Growth and Ageing of the Population in a New Receiving Country: the Case of Greece. International Migration 44(4): 232-254. Tsimbos, C. (2008). Immigrant and Native Fertility in Greece: New Estimates and Population Prospects (2005-2025). Population Review 47(2): 67-84. Tsimbos C., Kalogirou S., and Verropoulou G. (2011). Life expectancy variation across local authorities in Greece in 2001 and associations with socioeconomic conditions and population density of localities. Paper presented at the 2011 Annual Conference of the British Society for Population Studies, University of York, York, 7–9 September 2011. Abstract available on line from: www2.lse.ac.uk/socialPolicy/BSPS/annualConference/2011/Abstracts.aspx#generated-subheading7. UNDP (1997). Human Development Report 1997. Oxford: Oxford University Press. UNDP (2006). Human Development Report 2006, Power, Poverty and the Global Water Crisis. New York: Palgrave Macmillan. Weeks J. R. (2010). Spatial Patterns of Fertility in Rural Egypt. In: L. Anselin and S. J. Rey (eds.). Advances in Spatial Science: Perspectives on Spatial Analysis. Berlin: Springer: 235-256. Wheeler, D. (2007). Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A 39(10): 2464-2481. Wheeler, D. and Tiefelsdorf. (2005). Multicollinearity and Correlation Among Local Regression Coefficients in Geographically Weighted Regression. Journal of Geographical Systems 7: 161-187. White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 48(4): 817–838. White M.J., Moreno L., and Guo S. (1995). The Interrelation of Fertility and Geographic Mobility in Peru: A Hazards Model Analysis. International Migration Review 29(2): 492-515. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/100406 |