Pihnastyi, Oleh and Khodusov, Valery and Subbotin, Sergey (2020): Linear Regression Model of the Conveyor Type Transport System. Published in: Proceedings of the 9th International Conference "Information Control Systems & Technologies" , Vol. 2711, (26 September 2020): pp. 468-481.
Preview |
PDF
MPRA_paper_103881.pdf Download (1MB) | Preview |
Abstract
This article discusses the prospects of using linear regression models to describe multi-section branched transport systems of conveyor type. A characteristic feature of the functioning of a multi-section transport system is the presence of resonant peak values for the flow parameters of the transport system and transport delay. Various variants of the linear regression model are investigated. It is shown that for multisection transport systems with a periodic nature of the magnitude of the incoming material flow into the transport system and periodic nature of the regulation of the belt speed the value of the transport delay is a quasi-stationary value. The transport delay can be excluded from model variables. Analysis of the various variants of linear regression models considered in the article shows that using them to describe branched transport systems is ineffective. The considered models can only be used for a qualitative analysis of the output stream from the transport system. The absence of a linear relationship between the input and output flow parameters of the transport system is shown.
Item Type: | MPRA Paper |
---|---|
Original Title: | Linear Regression Model of the Conveyor Type Transport System |
Language: | English |
Keywords: | conveyor PDE-model; distributed system; linear regression model |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C25 - Discrete Regression and Qualitative Choice Models ; Discrete Regressors ; Proportions ; Probabilities C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C44 - Operations Research ; Statistical Decision Theory D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity |
Item ID: | 103881 |
Depositing User: | Oleh Mikhalovych Pihnastyi |
Date Deposited: | 03 Nov 2020 14:55 |
Last Modified: | 03 Nov 2020 14:55 |
References: | 1. Razumnyj Ju., Ruhlov A., Kozar A. (2006) Povyshenie jenergojeffektivnosti konvejernogo transporta ugol'nyh shaht. Gіrnicha elektromehanіka ta avtomatika. 76:24–28. https://docplayer.ru/64655888-Povyshenie-energoeffektivnosti-konveyernogo-transporta-ugolnyh-shaht.html 2. Pihnastyi O., Khodusov V. (2018) Model of a composite magistral conveyor line. In Proceedings of the 2018 IEEE International Conference on System Analysis & Intelligent Computing (SAIC), pp.68–72. Ukraine, Kyiv. https://doi.org/10.1109/saic.2018.8516739 3. Alspaugh M. (2005) Longer Overland Conveyors with Distributed Power. In: Overland Conveyor Company, Lakewood, USA. http://www.overlandconveyor.com/pdf/Longer_Overland_Conveyors_with_Distributed_Power.pdf 4. Pihnastyi O.M. (2019) Control of the belt speed at unbalanced loading of the conveyor. Scientific Bulletin of National Mining University. 6:122–129. https://doi.org/10.29202/nvngu/2019-6/18 5. Bebic M.Z. Ristic L.B (2018) Speed controlled belt conveyors: drives and mechanical considerations. advances in electrical and computer engineering 18:51–60. https://doi.org/10.4316/AECE.2018.01007 6. Halepoto I.A., Shaikh M.Z., Chowdhry B.S., Uqaili M.A. (2016) Design and implementation of an intelligent energy-efficient conveyor system model based on variable speed drive control and physical modelling. International Journal of Control and Automation 9(6):379:388. http//dx.doi.org/10.14257/ijca.2016.9.6.36 7. Thompson M., Jennings A. (2016) Impumelelo coal mine is home to the world's longest belt conveyor. Mınıng Engineering. 68(10):14–35 http://conveyor-dynamics.com/wp-content/uploads/2017/11/Impumelelo.pdf 8. Bardzinski, P., Jurdziak, L., Kawalec, W. et al.(2020) Copper Ore Quality Tracking in a Belt Conveyor System Using Simulation Tools. Nat Resour Res 29:1031–1040. https://doi.org/10.1007/s11053-019-09493-6 9. Mathaba T., Xia X., (2015) A parametric energy model for energy management of long belt conveyors. Energies 8(12): 13590–13608. https://doi.org/10.3390/en81212375 10. Reutov, A. (2017) Simulation of load traffic and steeped speed control of conveyor. In: IOP Conference Series: Earth and Environmental, 87:1–4. https://doi.org/10.1088/1755-1315/87/8/082041 11. He D., Pang Y., Lodewijks G., Liu X. (2016) Determination of Acceleration for Belt Conveyor Speed Control in Transient Operation. International Journal of Engineering and Technology l.8(3):206–211. http://dx.doi.org/10.7763/IJET.2016.V8.886 12. Karolewski B., Ligocki P. (2014) Modelling of long belt conveyors. Maintenance and reliability. 16 (2): 179–187. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-ce355084-3e77-4e6b-b4b5-ff6131e77b30 13. Pihnastyi O., Khodusov V. (2017) Model of conveyer with the regulable speed. Bulletin of the South Ural State University. Ser.Mathematical Modelling, Programming and Computer Software 10: 64–77. https://doi.org/10.14529/mmp170407 14. Pihnastyi O.M., Khodusov V.D. (2018) Optimal Control Problem for a Conveyor-Type Production Line/ O.M.Pihnastyi, Khodusov // Cybern. Syst. Anal. 54(5):744–753. https://doi.org/10.1007/s10559-018-0076-2 15. Krol R., Kawalec W., Gladysiewicz L. (2017) An effective belt conveyor for underground ore transportation systems. In: IOP Conference Series: Earth and Environmental Science, 95(4): 1–4. https://doi.org/10.1088/1755-1315/95/4/042047 16. Conveyorbeltguide Engineering: Conveyor components. (2020) http://conveyorbeltguide.com/examples-of-use.html. Accessed 12 Apr 2020 17. Andrejiova M, Marasova D.(2013). Using the classical linear regression model in the analysis of the dependences of conveyor belt life. Acta Montanistica Slovaca 18(2): 77–84. https://actamont.tuke.sk/pdf/2013/n2/2andrejiova.pdf 18. Harding J., Hodkiewicz M., Khan N., Race C., Wilson R. (2014) Conveyor Belt Wear Life Modelling. CEED Seminar Proceedings 2014. 43–48. https://ceed.wa.edu.au/wp-content/uploads/2017/02/BHPBIO-Conveyor-Belt-Wear-Life-Harding.pdf 19. Karolewski B., Marasova D. (2014) Experimental research and mathematical modelling as an effective tool for assessing the failure of conveyor belts. Maintenance and reliability 16(2):229–235. http://www.ein.org.pl/sites/default/files/2014-02-09.pdf 20. Lu Ya., Li Q. (2019) A regression model for prediction of idler rotational resistance on belt conveyor. Measurement and Control 52(5):441–448. https://doi.org/10.1177/0020294019840723 21. Suchorab N. (2019) Specific energy consumption. Mining Science. 26:263–274. https://doi.org/10.37190/msc192619 22. Stadnik M., Semenchenko D., Semenchenko A., Belytsky P., Virych S., Tkachov V. (2019) Improving the energy efficiency of coal transportation by adjusting the speeds of a combine and a mine face conveyor. Eastern-European Journal of Enterprise Technologies, 1(8 (97)):60–70. http://doi.org/10.15587/1729-4061.2019.156121 23. Dmitrieva V. V., Sizin P. E. (2020) Continuous belt conveyor speed control in case of the reduced spectral density of load flow. MIAB. Mining Inf. Anal. Bull. 2:130-138. [In Russ]. https://elibrary.ru/item.asp?id=42326450 24. Kondrakhin V., Stadnik N., Belitsky P. (2013) Statistical analysis of mine belt conveyor operating parameters. Nauchnye trudy Donetskogo natsional'nogo tekhnicheskogo universi-teta. Seriya: gorno-elektromekhanicheskaya, 2(26): 140-150. [In Russ]. http://nbuv.gov.ua/UJRN/Npdntu_gir_2013_2_15 25. Prokuda V. M., Mishanskiy Yu. A., Protsenko S. N. (2012) Investigation and evaluation of the freight traffic on the magistral conveyor transport of the PSP «Mine «Pavlogradskaya» PAO «DTEK Pavlogradugol». Gornaya elektromekhanika. 88:107–111. [In Russ]. http://ir.nmu.org.ua/bitstream/handle/123456789/880/24.pdf?sequence=1 26. Lemeshko B., Chimitova E. (2003) On the choice of the number of intervals in the criteria of agreement type. Industrial Laboratory. 69(1):61-67. https://www.elibrary.ru/item.asp?id=21540491 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/103881 |