Chernobai, Anna and Burnecki, Krzysztof and Rachev, Svetlozar and Trueck, Stefan and Weron, Rafal (2005): Modelling catastrophe claims with left-truncated severity distributions (extended version).
Preview |
PDF
MPRA_paper_10423.pdf Download (395kB) | Preview |
Abstract
In this paper, we present a procedure for consistent estimation of the severity and frequency distributions based on incomplete insurance data and demonstrate that ignoring the thresholds leads to a serious underestimation of the ruin probabilities. The event frequency is modelled with a non-homogeneous Poisson process with a sinusoidal intensity rate function. The choice of an adequate loss distribution is conducted via the in-sample goodness-of-fit procedures and forecasting, using classical and robust methodologies.
This is an extended version of the article: Chernobai et al. (2006) Modelling catastrophe claims with left-truncated severity distributions, Computational Statistics 21(3-4): 537-555.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modelling catastrophe claims with left-truncated severity distributions (extended version) |
Language: | English |
Keywords: | Natural Catastrophe, Property Insurance, Loss Distribution, Truncated Data, Ruin Probability |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General G - Financial Economics > G2 - Financial Institutions and Services > G22 - Insurance ; Insurance Companies ; Actuarial Studies C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C24 - Truncated and Censored Models ; Switching Regression Models ; Threshold Regression Models C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General |
Item ID: | 10423 |
Depositing User: | Rafal Weron |
Date Deposited: | 13 Sep 2008 00:40 |
Last Modified: | 28 Sep 2019 16:20 |
References: | Bee, M. (2005), On maximum likelihood estimation of operational loss distributions, Technical Report 3, University of Trento. Bierbrauer, M., Trueck, S. & Weron, R. (2004), ‘Modeling electricity prices with regime switching models’, Lecture Notes in Computer Science 3039, 859–867. Burnecki, K., Haerdle, W. & Weron, R. (2004), An introduction to simulation of risk processes, in J. Teugels & B. Sundt, eds, ‘Encyclopedia of Actuarial Science’, Wiley, Chichester. Burnecki, K., Kukla, G. & Weron, R. (2000), ‘Property insurance loss distributions’, Physica A 287, 269–278. Burnecki, K., Misiorek, A. & Weron, R. (2005), Loss distributions, in P. Cizek, W. Haerdle & R. Weron, eds, ‘Statistical Tools for Finance and Insurance’, Springer, Berlin. Burnecki, K. & Weron, R. (2005), Modeling of the risk process, in P. Cizek, W. Haerdle & R. Weron, eds, ‘Statistical Tools for Finance and Insurance’, Springer, Berlin. Chernobai, A., Menn, C., Trueck, S. & Rachev, S. (2005a), ‘A note on the estimation of the frequency and severity distribution of operational losses’, Mathematical Scientist 30(2). Chernobai, A., Rachev, S. & Fabozzi, F. (2005b), Composite goodness-of-fit tests for left-truncated loss samples, Technical report, University of California Santa Barbara. Chernobai, A., Trueck, S., Menn, C. & Rachev, S. (2005c), Estimation of operational Value-at-Risk with minimum collection thresholds, Technical report, University of California Santa Barbara. Dempster, A., Laird, N. & Rubin, D. (1977), ‘Maximum likelihood from incomplete data via the em algorithm’, Journal of the Royal Statistical Society, Series B (Methodological) 39(1), 1–38. Embrechts, P., Klueppelberg, C. & Mikosch, T. (1997), Modeling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin. Figueiredo, M. A. T. & Nowak, R. D. (2003), ‘An em algorithm for wavelet-based image restoration’, IEEE Transactions on Image Processing 12(8), 906–916. Grandell, J. (1991), Aspects of Risk Theory, Springer-Verlag, New York. Hampel, F. R., Ronchetti, E. M., Rousseeuw, R. J. & Stahel, W. A. (1986), Robust Statistics: The Approach Based on Influence Functions, Wiley & Sons. Huber, P. J. (2004), Robust Statistics, John Wiley & Sons, Hoboken. Klugman, S. A., Panjer, H. H. & Willmot, G. E. (1998), Loss Models: From Data to Decisions, Wiley, New York. Knez, P. J. & Ready, M. J. (1997), ‘On the robustness of size and book-to-market in cross-sectional regressions’, Journal of Finance 52, 1355–1382. Kremer, E. (1998), Largest claims reinsurance premiums for the Weibull model, in ‘Blaetter der Deutschen Gesellschaft fur Versicherungsmathematik’, pp. 279–284. Madan, D. B. & Unal, H. (2004), Risk-neutralizing statistical distributions: with an application to pricing reinsurance contracts on FDIC losses, Technical Report 2004-01, FDIC, Center for Financial Research. Martin, R. D. & Simin, T. T. (2003), ‘Outlier resistant estimates of beta’, Financial Analysts Journal 59, 56–69. McLachlan, G. & Krishnan, T. (1997), The EM Algorithm and Extensions, Wiley Series in Probability and Statistics, John Wiley & Sons. Meng, X.-L. & van Dyk, D. (1997), ‘The em algorithm - an old folk-song sung to a fast new tune’, Journal of the Royal Statistical Society, Series B (Methodological) 59(3), 511–567. Mittnik, S. & Rachev, S. T. (1993a), ‘Modelling asset returns with alternative stable distributions’, Econometric Reviews 12, 261–330. Mittnik, S. & Rachev, S. T. (1993b), ‘Reply to comments on modelling asset returns with alternative stable distributions and some extensions’, Econometric Reviews 12, 347–389. Panjer, H. & Willmot, G. (1992), Insurance Risk Models, Society of Actuaries, Schaumburg. Patrik, G. (1981), Estimating casualty insurance loss amount distributions, in ‘Proceedings of the Casualty Actuarial Society’, Vol. 67, pp. 57–109. Rousseeuw, P. J. & Leroy, A. M. (2003), Robust Regression and Outlier Detection, John Wiley & Sons, Hoboken. SwissRe (2004), ‘Sigma preliminary report’. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/10423 |