Micheli, Leonardo and Theristis, Marios and Talavera, Diego L. and Almonacid, Florencia and Stein, Joshua S. and Fernandez, Eduardo F. (2020): Photovoltaic Cleaning Frequency Optimization Under Different Degradation Rate Patterns. Published in: Renewable Energy , Vol. 166, No. April 2020 (13 November 2020): pp. 136-146.
Preview |
PDF
MPRA_paper_105008.pdf Download (892kB) | Preview |
Abstract
Dust accumulation significantly affects the performance of photovoltaic modules and its impact can be mitigated by various cleaning methods. Optimizing the cleaning frequency is therefore essential to minimize the soiling losses and, at the same time, the costs. However, the effectiveness of cleaning lowers with time because of the reduced energy yield due to degradation. Additionally, economic factors such as the escalation in electricity price and inflation can either compound or counterbalance the effect of degradation. The present study analyzes the impact of degradation, escalation in electricity price and inflation on cleaning frequency and proposes a methodology than can be applied to maximize the profits of soiling mitigation in any system worldwide. The energy performance and soiling losses of a 1 MW system installed in southern Spain were analyzed and integrated with theoretical linear and nonlinear degradation rate patterns. The Levelized Cost of Energy and Net Present Value were used as criteria to identify the optimum cleaning strategies. The results showed that the two metrics convey distinct cleaning recommendations, as they are influenced by different factors. For the given site, despite the degradation effects, the optimum cleaning frequency is found to increase with time of operation.
Item Type: | MPRA Paper |
---|---|
Original Title: | Photovoltaic Cleaning Frequency Optimization Under Different Degradation Rate Patterns |
Language: | English |
Keywords: | Soiling; Cleaning Frequency; Optimization; Photovoltaics; Degradation Rate; Economics |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy |
Item ID: | 105008 |
Depositing User: | Dr. Leonardo Micheli |
Date Deposited: | 11 Jan 2021 03:04 |
Last Modified: | 11 Jan 2021 03:04 |
References: | B. Paudyal, M. Bolen, D. Fregosi, PV Plant Performance Loss Rate Assessment: Significance of Data Filtering and Aggregation, Conf. Rec. IEEE Photovolt. Spec. Conf. (2019) 866–869. https://doi.org/10.1109/PVSC40753.2019.8981247. A. Phinikarides, N. Kindyni, G. Makrides, G.E. Georghiou, Review of photovoltaic degradation rate methodologies, Renew. Sustain. Energy Rev. 40 (2014) 143–152. https://doi.org/10.1016/j.rser.2014.07.155. S. Lindig, I. Kaaya, K.A. Weis, D. Moser, M. Topic, Review of statistical and analytical degradation models for photovoltaic modules and systems as well as related improvements, IEEE J. Photovoltaics. 8 (2018) 1773–1786. https://doi.org/10.1109/JPHOTOV.2018.2870532. D.C. Jordan, T.J. Silverman, B. Sekulic, S.R. Kurtz, PV degradation curves: non-linearities and failure modes, Prog. Photovoltaics Res. Appl. 25 (2017) 583–591. https://doi.org/10.1002/pip.2835. M. Theristis, A. Livera, C.B. Jones, G. Makrides, G.E. Georghiou, J. Stein, Nonlinear photovoltaic degradation rates: Modeling and comparison against conventional methods, IEEE J. Photovoltaics. (2020). M. Theristis, A. Livera, L. Micheli, B. Jones, G. Makrides, G.E. Georghiou, J. Stein, Modeling nonlinear photovoltaic degradation rates, in: IEEE 47th Photovolt. Spec. Conf., 2020. F.A. Mejia, J. Kleissl, Soiling losses for solar photovoltaic systems in California, Sol. Energy. 95 (2013) 357–363. https://doi.org/10.1016/j.solener.2013.06.028. R. Conceição, I. Vázquez, L. Fialho, D. García, Soiling and rainfall effect on PV technology in rural Southern Europe, Renew. Energy. 156 (2020) 743–747. https://doi.org/10.1016/j.renene.2020.04.119. K. Ilse, L. Micheli, B.W. Figgis, K. Lange, D. Daßler, H. Hanifi, F. Wolfertstetter, V. Naumann, C. Hagendorf, R. Gottschalg, J. Bagdahn, Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation, Joule. 3 (2019) 2303–2321. https://doi.org/10.1016/j.joule.2019.08.019. A. Massi Pavan, A. Mellit, D. De Pieri, The effect of soiling on energy production for large-scale photovoltaic plants, Sol. Energy. 85 (2011) 1128–1136. https://doi.org/10.1016/j.solener.2011.03.006. [11] R. Conceição, H.G. Silva, L. Fialho, F.M. Lopes, M. Collares-Pereira, PV system design with the effect of soiling on the optimum tilt angle, Renew. Energy. 133 (2019) 787–796. https://doi.org/10.1016/j.renene.2018.10.080. M. Mani, R. Pillai, Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations, Renew. Sustain. Energy Rev. 14 (2010) 3124–3131. https://doi.org/10.1016/j.rser.2010.07.065. National Renewable Energy Laboratory (NREL), Best Practices for Operation and Maintenance of Photovoltaic and Energy Storage Systems ; 3rd Edition., (2018) 153. https://www.nrel.gov/research/publications.html. A. Ullah, A. Amin, T. Haider, M. Saleem, N.Z. Butt, Investigation of soiling effects, dust chemistry and optimum cleaning schedule for PV modules in Lahore, Pakistan, Renew. Energy. 150 (2020) 456–468. https://doi.org/10.1016/j.renene.2019.12.090. P. Besson, C. Munoz, G. Ramirez-Sagner, M. Salgado, R. Escobar, W. Platzer, Long-Term Soiling Analysis for Three Photovoltaic Technologies in Santiago Region, IEEE J. Photovoltaics. 7 (2017) 1755–1760. https://doi.org/10.1109/JPHOTOV.2017.2751752. R.K. Jones, A. Baras, A. Al Saeeri, A. Al Qahtani, A.O. Al Amoudi, Y. Al Shaya, M. Alodan, S.A. Al-Hsaien, Optimized Cleaning Cost and Schedule Based on Observed Soiling Conditions for Photovoltaic Plants in Central Saudi Arabia, IEEE J. Photovoltaics. 6 (2016) 730–738. https://doi.org/10.1109/JPHOTOV.2016.2535308. S. You, Y.J. Lim, Y. Dai, C.H. Wang, On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities, Appl. Energy. 228 (2018) 1136–1146. https://doi.org/10.1016/j.apenergy.2018.07.020. P.M. Rodrigo, S. Gutierrez, L. Micheli, E.F. Fernández, F. Almonacid, Optimum cleaning schedule of photovoltaic systems based on levelised cost of energy and case study in central Mexico, Submitted. E. Urrejola, J. Antonanzas, P. Ayala, M. Salgado, G. Ramírez-Sagner, C. Cortés, A. Pino, R. Escobar, Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile, Energy Convers. Manag. 114 (2016) 338–347. https://doi.org/10.1016/j.enconman.2016.02.016. M. Ciucci, Internal energy market, Fact Sheets Eur. Union. (2020). https://www.europarl.europa.eu/factsheets/en/sheet/45/internal-energy-market (accessed July 3, 2020). D.L. Alvarez, A.S. Al-Sumaiti, S.R. Rivera, Estimation of an Optimal PV Panel Cleaning Strategy Based on Both Annual Radiation Profile and Module Degradation, IEEE Access. 8 (2020) 63832–63839. https://doi.org/10.1109/ACCESS.2020.2983322. J.S. Stein, C. Robinson, B. King, C. Deline, S. Rummel, B. Sekulic, PV Lifetime Project: Measuring PV Module PerformanceDegradation: 2018 Indoor Flash TestingResults, 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 - A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC. (2018) 771–777. https://doi.org/10.1109/PVSC.2018.8547397. L. Micheli, E.F. Fernández, J. Aguilera, F. Almonacid, Economics of seasonal photovoltaic soiling and cleaning optimization scenarios, Submitted. Global Modeling and Assimilation Office (GMAO), MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4, (2015). https://doi.org/10.5067/VJAFPLI1CSIV. W.F. Holmgren, C.W. Hansen, M.A. Mikofski, pvlib python: a python package for modeling solar energy systems, J. Open Source Softw. 3 (2018). https://doi.org/https://doi.org/10.21105/joss.00884. A.F. Souka, H.H. Safwat, Determination of the optimum orientations for the double-exposure, flat-plate collector and its reflectors, (n.d.). https://doi.org/10.1016/0038-092X(66)90004-1. ASHRAE standard 93-77, (n.d.). D.L. King, W.E. Boyson, J.A. Kratochvill, Photovoltaic array performance model, Albuquerque, New Mexico, 2004. https://doi.org/10.2172/919131. F. Kasten, A.T. Young, Revised optical air mass tables and approximation formula, Appl. Opt. 28 (1989) 4735–4738. https://doi.org/10.1364/AO.28.004735. C. Gueymard, Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data, Sol. Energy. 51 (1993) 121–138. https://doi.org/10.1016/0038-092X(93)90074-X. I. Reda, A. Andreas, Solar position algorithm for solar radiation applications, Sol. Energy. 76 (2004) 577–589. https://doi.org/10.1016/j.solener.2003.12.003. L. Micheli, M. Muller, E.F. Fernández, F.M. Almonacid, Change Point Detection: An Opportunity to Improve PV Soiling Extraction, in: IEEE 45th Photovolt. Spec. Conf., 2020. A. Kimber, L. Mitchell, S. Nogradi, H. Wenger, The Effect of Soiling on Large Grid-Connected Photovoltaic Systems in California and the Southwest Region of the United States, in: Photovolt. Energy Conversion, Conf. Rec. 2006 IEEE 4th World Conf., 2006: pp. 2391–2395. M.G. Deceglie, L. Micheli, M. Muller, Quantifying Soiling Loss Directly From PV Yield, IEEE J. Photovoltaics. 8 (2018) 547–551. https://doi.org/10.1109/JPHOTOV.2017.2784682. L. Micheli, E.F. Fernandez, M. Muller, F. Almonacid, Extracting and Generating PV Soiling Profiles for Analysis, Forecasting, and Cleaning Optimization, IEEE J. Photovoltaics. 10 (2020) 197–205. https://doi.org/10.1109/JPHOTOV.2019.2943706. J. Zorrilla-Casanova, M. Piliougine, J. Carretero, P. Bernaola-Galván, P. Carpena, L. Mora-López, M. Sidrach-de-Cardona, Losses produced by soiling in the incoming radiation to photovoltaic modules, Prog. Photovoltaics Res. Appl. 20 (2012) n/a-n/a. https://doi.org/10.1002/pip.1258. R. Appels, B. Lefevre, B. Herteleer, H. Goverde, A. Beerten, R. Paesen, K. De Medts, J. Driesen, J. Poortmans, Effect of soiling on photovoltaic modules, Sol. Energy. 96 (2013) 283–291. https://doi.org/10.1016/j.solener.2013.07.017. National Renewable Energy Laboratory, Photovoltaic modules soiling map, (2018). https://www.nrel.gov/pv/soiling.html (accessed May 18, 2018). F. Kersten, P. Engelhart, H.C. Ploigt, A. Stekolnikov, T. Lindner, F. Stenzel, M. Bartzsch, A. Szpeth, K. Petter, J. Heitmann, J.W. Muller, A new mc-Si degradation effect called LeTID, 2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 2015. (2015). https://doi.org/10.1109/PVSC.2015.7355684. M. Theristis, V. Venizelou, G. Makrides, G.E. Georghiou, Energy yield in photovoltaic systems, in: McEvoy’s Handb. Photovoltaics Fundam. Appl., 2018: pp. 671–713. https://doi.org/10.1016/B978-0-12-809921-6.00017-3. D.L. Staebler, C.R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si, Appl. Phys. Lett. 31 (1977) 292–294. https://doi.org/10.1063/1.89674. D.L. Talavera, E. Muñoz-Cerón, J.P. Ferrer-Rodríguez, P.J. Pérez-Higueras, Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites, Renew. Energy. 134 (2019) 902–913. https://doi.org/10.1016/j.renene.2018.11.091. The World Bank, Inflation, consumer prices (annual %), (2020). https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG (accessed May 18, 2020). G. Jiménez-Castillo, F.J. Muñoz-Rodriguez, C. Rus-Casas, D.L. Talavera, A new approach based on economic profitability to sizing the photovoltaic generator in self-consumption systems without storage, Renew. Energy. 148 (2020) 1017–1033. https://doi.org/10.1016/j.renene.2019.10.086. OMIE, Informes anuales, (2020). https://www.omie.es/es/publicaciones/informe-anual (accessed May 18, 2020). C. Himmelskamp, Fotovoltaica en España: breve resumen de tarifas, del desarrollo de proyectos y la financiación de instalaciones fotovoltaicas, Pv-Magazine. (2019). https://www.pv-magazine.es/2019/03/08/fotovoltaica-en-espana-breve-resumen-de-tarifas-del-desarrollo-de-proyectos-y-la-financiacion-de-instalaciones-fotovoltaicas/ (accessed July 6, 2020). Eurostat. European Commission, Energy statistics - prices of natural gas and electricity, (2020). http://ec.europa.eu/eurostat/web/energy/data/database (accessed May 17, 2020). S. Enkhardt, Europe has now 8.4 GW of planned and built PV projects under PPAs, Pv-Magazine. (2020). https://www.pv-magazine.com/2020/01/29/europe-has-now-8-4-gw-of-planned-and-built-pv-projects-under-ppas/ (accessed July 6, 2020). IEA PVPS, Trends in photovoltaic applications 2019, 2020. https://iea-pvps.org/wp-content/uploads/2020/02/5319-iea-pvps-report-2019-08-lr.pdf. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/105008 |