Liu, Liang and Yang, Kun and Fujii, Hidemichi and Liu, Jun (2021): Artificial Intelligence and Energy Intensity in China’s Industrial Sector: Effect and Transmission Channel.
Preview |
PDF
MPRA_paper_106333.pdf Download (844kB) | Preview |
Abstract
The continued development of artificial intelligence (AI) has changed production methods but may also pose challenges related to energy consumption; in addition, the effectiveness of AI differs across industries. Thus, to develop efficient policies, it is necessary to discuss the effect of AI adoption on energy intensity and to identify industries that are more significantly affected. Using data on industrial robots installed in 16 Chinese industrial subsectors from 2006 to 2016, this paper investigates both the effect of AI on energy intensity and the channel through which this effect is transmitted. The empirical results show, first, that boosting applications of AI can significantly reduce energy intensity by both increasing output value and reducing energy consumption, especially for energy intensities at high quantiles. Second, compared with the impacts in capital-intensive sectors (e.g., basic metals, pharmaceuticals, and cosmetics), the negative impacts of AI on energy intensity in labor-intensive sectors (e.g., textiles and paper) and technology-intensive sectors (e.g., industrial machinery and transportation equipment) are more pronounced. Finally, the impact of AI on energy intensity is primarily achieved through its facilitation of technological progress; this accounts for 78.3% of the total effect. To reduce energy intensity, the Chinese government should effectively promote the development of AI and its use in industry, especially in labor-intensive and technology-intensive sectors.
Item Type: | MPRA Paper |
---|---|
Original Title: | Artificial Intelligence and Energy Intensity in China’s Industrial Sector: Effect and Transmission Channel |
Language: | English |
Keywords: | artificial intelligence; energy intensity; energy consumption; industrial robot; China |
Subjects: | L - Industrial Organization > L6 - Industry Studies: Manufacturing O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O14 - Industrialization ; Manufacturing and Service Industries ; Choice of Technology O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O32 - Management of Technological Innovation and R&D |
Item ID: | 106333 |
Depositing User: | Hidemichi Fujii |
Date Deposited: | 05 Mar 2021 03:43 |
Last Modified: | 05 Mar 2021 03:43 |
References: | Acemoglu, D., Restrepo, P., 2018. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 108(6): 1488-1542. https://doi.org/10.1257/aer.20160696. Acemoglu, D., Restrepo, P., 2020a. The wrong kind of AI? Artificial intelligence and the future of labour demand. Cambridge J. Reg. Econ. Soc. 13(1): 25-35. https://doi.org/10.1093/cjres/rsz022. Acemoglu, D., Restrepo, P., 2020b. Robots and jobs: Evidence from US labor markets. J. Polit. Econ. 128(6): 2188-2244. https://doi.org/10.1086/705716. Aghion, P, Jones, B., Jones, C., 2017. Artificial intelligence and economic growth. Natl. Bur. Econ. Res. https://www.nber.org/papers/w23928. Alam, M.S., Atif, M., Chien-Chi, C., Soytaş, U., 2019. Does corporate R&D investment affect firm environmental performance? Evidence from G-6 countries. Energy Econ. 78, 401-411. https://doi.org/10.1016/j.eneco.2018.11.031. Alok K . Energy Intensity: A Quantitative Exploration for Indian Manufacturing[J]. Ssrn Electronic Journal, 2004. https://doi.org/10.2139/ssrn.468440 Avom, D., Nkengfack, H., Fotio, H.K., Totouom, A., 2020. ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels. Technol. Forecast. Soc. Change 155, 120028. https://doi.org/10.1016/j.techfore.2020.120028. Ballestar M T, Díaz-Chao Á, Sainz J, et al. Knowledge, robots and productivity in SMEs: Explaining the second digital wave[J]. Journal of Business Research, 2020, 108: 119-131. Barbieri L, Mussida C, Piva M, et al. Testing the Employment Impact of Automation, Robots and AI: A Survey and Some Methodological Issues[R]. IZA Discussion Papers, 2019. Bastida L, Cohen J J, Kollmann A, et al. Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 455-462. Bard J F. An assessment of industrial robots: capabilities, economics, and impacts[J]. Journal of operations Management, 1986, 6(2): 99-124. Belkhir L, Elmeligi A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations[J]. Journal of cleaner production, 2018, 177: 448-463. Brossog M, Bornschlegl M, Franke J. Reducing the energy consumption of industrial robots in manufacturing systems[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(5-8): 1315-1328. https://doi.org/10.1007/s00170-014-6737-z. Brynjolfsson, E., Rock, D., Syverson, C., 2017. Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. Natl. Bur. Econ. Res. https://www.nber.org/papers/w24001. Bu, M., Li, S., Jiang, L., 2019. Foreign direct investment and energy intensity in China: Firm-level evidence. Energy Econ. 80, 366-376. https://doi.org/10.1016/j.eneco.2019.01.003. Cagno E, Trucco P, Trianni A, et al. Quick-E-scan: A methodology for the energy scan of SMEs[J]. Energy, 2010, 35(5): 1916-1926. https://doi.org/10.1016/j.energy.2010.01.003 Cai S, Chen X, Bose I. Exploring the role of IT for environmental sustainability in China: An empirical analysis[J]. International Journal of Production Economics, 2013, 146(2): 491-500. https://doi.org/10.1016/j.ijpe.2013.01.030. Camiña E, Díaz-Chao Á, Torrent-Sellens J. Automation technologies: Long-term effects for Spanish industrial firms[J]. Technological Forecasting and Social Change, 2020, 151: 119828. Carbonero F, Ernst E, Weber E. Robots Worldwide: The Impact of Automation on Employment and Trade[R]. Verein für Socialpolitik/German Economic Association, 2020. Chen X. Substitution of information for energy: conceptual background, realities and limits[J]. Energy policy, 1994, 22(1): 15-27. Chen X, Gong X, Li D, et al. Can information and communication technology reduce CO 2 emission? A quantile regression analysis[J]. Environmental Science and Pollution Research, 2019, 26(32): 32977-32992. https://doi-org.flyyouth.top/10.1007/s11356-019-06380-8. Chen, L., Xu, L., Yang, Z., 2017. Accounting carbon emission changes under regional industrial transfer in an urban agglomeration in China’s Pearl River Delta. J. Clean. Prod. 167, 110-119. https://doi.org/10.1016/j.jclepro.2017.08.041. Chiacchio F, Petropoulos G, Pichler D. The impact of industrial robots on EU employment and wages: A local labour market approach[R]. Bruegel working paper, 2018. Chowdhury J I, Hu Y, Haltas I, et al. Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 1153-1178. https://doi.org/10.1016/j.rser.2018.06.040. Cockburn, I.M., Henderson, R., Stern, S., 2018. The Impact of artificial intelligence on innovation. Natl. Bur. Econ. Res. https://www.nber.org/papers/w24449. Corbett J. Using information systems to improve energy efficiency: Do smart meters make a difference?[J]. Information Systems Frontiers, 2013, 15(5): 747-760. https://doi.org/10.1007/s10796-013-9414-0. Dirican C. The impacts of robotics, artificial intelligence on business and economics[J]. Procedia-Social and Behavioral Sciences, 2015, 195: 564-573. Dauth W, Findeisen S, Jens S, et al. German Robots-The Impact of Industrial Robots on Workers[R]. CEPR Discussion Papers, 2017. Dekle R. Robots and industrial labor: Evidence from Japan[J]. Journal of the Japanese and International Economies, 2020, 58: 101108. Dong, K., Sun, R., Hochman, G., Li, H., 2018. Energy intensity and energy conservation potential in China: A regional comparison perspective. Energy 155, 782-795. https://doi.org/10.1016/j.energy.2018.05.053. Dyer C H, Hammond G P, Jones C I, et al. Enabling technologies for industrial energy demand management[J]. Energy Policy, 2008, 36(12): 4434-4443. Edler D, Ribakova T. The impact of industrial robots on the level and structure of employment in Germany—a simulation study for the period 1980–2000[J]. Technological Forecasting and Social Change, 1994, 45(3): 255-274. Engineering Council, 1998. 2020 Vision: the engineering challenges of energy. Proceedings of IMechE Part A: Journal of Power and Energy 212, 389–483 (special issue). Executive office of the President, 2016. Intelligence A. Automation, and the Economy[J]. https://obamawhitehouse.archives.gov/blog/2016/12/20/artificial-intelligence-automation-and-economy. Fatima S, Desouza K C, Dawson G S. National strategic artificial intelligence plans: A multi-dimensional analysis[J]. Economic Analysis and Policy, 2020, 67: 178-194. https://doi.org/10.1016/j.eap.2020.07.008. Faucheux S, Nicolaï I. IT for green and green IT: A proposed typology of eco-innovation[J]. Ecological economics, 2011, 70(11): 2020-2027. Fisher-Vanden K, Hu Y, Jefferson G, et al. Factors influencing energy intensity in four Chinese industries[J]. The Energy Journal, 2016, 37(China Special Issue). https://doi.org/10.5547/01956574.37.SI1.kfis. Fisher-Vanden, K., Jefferson, G.H., Jingkui, M., Jianyi, X., 2006. Technology development and energy productivity in China. Energy Econ. 28, 690-705. https://doi.org/10.1016/j.eneco.2006.05.006. Fujii, H., Managi, S., 2013. Which industry is greener? An empirical study of nine industries in OECD countries. Energy Policy 57, 381–388. https://doi.org/10.1016/j.enpol.2013.02.011 Graetz G, Michaels G. Robots at work[J]. Review of Economics and Statistics, 2018, 100(5): 753-768. Golder B. Energy intensity of Indian manufacturing firms: effect of energy prices, technology and firm characteristics[J]. Science, Technology and Society, 2011, 16(3): 351-372. https://doi-org.flyyouth.top/10.1177/097172181101600306. Gordon, Robert J. Why has economic growth slowed when innovation appears to be accelerating?. No. w24554. National Bureau of Economic Research, 2018. Grant, D., Jorgenson, A.K., Longhofer, W., 2016. How organizational and global factors condition the effects of energy efficiency on CO2 emission rebounds among the world’s power plants. Energy Policy 94, 89-93. https://doi.org/10.1016/j.enpol.2016.03.053. Gruber E, Brand M. Promoting energy conservation in small and medium-sized companies[J]. Energy Policy, 1991, 19(3): 279-287. https://doi-org.flyyouth.top/10.1016/0301-4215(91)90152-E Haas, C., Kempa, K., 2016. Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency, SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2788055. Hall C, Tharakan P, Hallock J, et al. Hydrocarbons and the evolution of human culture[J]. Nature, 2003, 426(6964): 318-322. http://dx.doi.org/10.1038/nature02130. He, F., Zhang, Q., Lei, J., Fu, W., Xu, X., 2013. Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs. Energy Policy 54, 204-213. https://doi.org/10.1016/j.enpol.2012.11.020. Heckman J J. Sample selection bias as a specification error[J]. Econometrica: Journal of the econometric society, 1979: 153-161. https://doi-org.flyyouth.top/10.2307/1912352. Heghedus C, Chakravorty A, Rong C. Energy informatics applicability; machine learning and deep learning[C]//2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD). IEEE, 2018: 97-101. Huang, J., Chen, X., 2020. Domestic R&D activities, technology absorption ability, and energy intensity in China. Energy Policy 138, 111184. https://doi.org/10.1016/j.enpol.2019.111184. Huang, J., Du, D., Tao, Q., 2017. An analysis of technological factors and energy intensity in China. Energy Policy 109, 1-9. https://doi.org/10.1016/j.enpol.2017.06.048. Huang, J., Hao, Y., Lei, H., 2018. Indigenous versus foreign innovation and energy intensity in China. Renew. Sustain. Energy Rev. 81, 1721-1729. https://doi.org/10.1016/j.rser.2017.05.266. Howell D R. The future employment impacts of industrial robots: An input-output approach[J]. Technological Forecasting and Social Change, 1985, 28(4): 297-310. IEA (2018), Efficiency should always be the first answer, IEA, Paris https://www.iea.org/commentaries/efficiency-should-always-be-the-first-answer. Jung J H, Lim D G. Industrial robots, employment growth, and labor cost: A simultaneous equation analysis[J]. Technological Forecasting and Social Change, 2020, 159: 120202. Khazzoom J D. Economic Implications of Mandated Efficiency in Standards for Household Appliances[J]. The Energy Journal, 1980, 1(4): 21-40. http://dx.doi.org/10.5547/ISSN0195-6574-EJ-Vol1-No4-2. Koh H, Magee C L. A functional approach for studying technological progress: Extension to energy technology[J]. Technological Forecasting and Social Change, 2008, 75(6): 735-758. Kromann L, Malchow-Møller N, Skaksen J R, et al. Automation and productivity—a cross-country, cross-industry comparison[J]. Industrial and Corporate Change, 2020, 29(2): 265-287. Lan, J., Kakinaka, M., Huang, X., 2012. Foreign Direct Investment, Human Capital and Environmental Pollution in China. Environ. Resour. Econ. 51, 255-275. https://doi.org/10.1007/s10640-011-9498-2. Lange S, Pohl J, Santarius T. Digitalization and energy consumption. Does ICT reduce energy demand?[J]. Ecological Economics, 2020, 176: 106760. https://doi.org/10.1016/j.ecolecon.2020.106760. Li, M., Wang, Q., 2017. Will technology advances alleviate climate change? Dual effects of technology change on aggregate carbon dioxide emissions. Energy Sustain. Dev. 41, 61-68. https://doi.org/10.1016/j.esd.2017.08.004. Li X, Hui E C, Lang W, et al. Transition from factor-driven to innovation-driven urbanization in China: A study of manufacturing industry automation in Dongguan City[J]. China Economic Review, 2020, 59: 101382. Lin, B., Chen, Y., Zhang, G., 2018. Impact of technological progress on China’s textile industry and future energy saving potential forecast. Energy 161, 859-869. https://doi.org/10.1016/j.energy.2018.07.178. Lin, B., Tan, R., 2017. China’s CO2 emissions of a critical sector: Evidence from energy intensive industries. J. Clean. Prod. 142, 4270-4281. https://doi.org/10.1016/j.jclepro.2016.11.186. Lin, B., Xu, M., 2019. Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry. Energy 189, 116280. https://doi.org/10.1016/j.energy.2019.116280. Lin, B.Q., Zhao, H.L., 2016. Technological progress and energy rebound effect in China's textile industry: Evidence and policy implications. Renew. Sust. Energ. Rev. 60, 173-181. https://doi.org/10.1016/j.rser.2016.01.069. Liu J, Liu L, Qian Y, et al. The effect of artificial intelligence on carbon intensity: Evidence from China's industrial sector[J]. Socio-Economic Planning Sciences, 2021: 101002. https://doi.org/10.1016/j.seps.2020.101002 Liu, J., Chang, H., Forrest, J.Y.L., Yang, B., 2020. Influence of artificial intelligence on technological innovation: Evidence from the panel data of china’s manufacturing sectors. Technol. Forecast. Soc. Change 158, 120142. https://doi.org/10.1016/j.techfore.2020.120142. Lu, H., Li, Y., Chen, M., Kim, H., Serikawa, S., 2018. Brain Intelligence: Go beyond artificial intelligence. Mob. Networks Appl. 23, 368-375. https://doi.org/10.1007/s11036-017-0932-8. Luan, B., Huang, J., Zou, H., Huang, C., 2020. Determining the factors driving China’s industrial energy intensity: Evidence from technological innovation sources and structural change. Sci. Total Environ. 737, 139767. https://doi.org/10.1016/j.scitotenv.2020.139767. Machado C G, Winroth M P, Ribeiro da Silva E H D. Sustainable manufacturing in Industry 4.0: an emerging research agenda[J]. International Journal of Production Research, 2020, 58(5): 1462-1484. Mickoleit A. Greener and Smarter: ICTs, the Environment and Climate Change[R]. OECD Publishing, 2010. Mcelheran, K., 2018. Economic Measurement of AI. Natl. Bur. Econ. Res. http://conference.nber.org/conf_papers/f114642.pdf. Montalbano, P., Nenci, S., 2019. Energy efficiency, productivity and exporting: Firm-level evidence in Latin America. Energy Econ. 79, 97-110. https://doi.org/10.1016/j.eneco.2018.03.033. Nguyen, T.T., Pham, T.A.T., Tram, H.T.X., 2020. Role of information and communication technologies and innovation in driving carbon emissions and economic growth in selected G-20 countries. J. Environ. Manage. 261, 110162. https://doi.org/10.1016/j.jenvman.2020.110162. Pastras, G., Fysikopoulos, A., Chryssolouris, G., 2019. A theoretical investigation on the potential energy savings by optimization of the robotic motion profiles. Robot. Comput. Integr. Manuf. 58, 55-68. https://doi.org/10.1016/j.rcim.2019.02.001. Pieri F, Vecchi M, Venturini F. Modelling the joint impact of R&D and ICT on productivity: A frontier analysis approach[J]. Research Policy, 2018, 47(9): 1842-1852. https://doi.org/10.1016/j.respol.2018.06.013. Pinzón K. Dynamics between energy consumption and economic growth in Ecuador: A granger causality analysis[J]. Economic Analysis and Policy, 2018, 57: 88-101. https://doi.org/10.1016/j.eap.2017.09.004. Purdy, M., Daugherty, P., 2017. How AI Boosts Industry Profits and Innovation. Accenture 1-8. https://www.accenture.com/us-en/insight-ai-industry-growth. Røpke, I., Christensen, T.H., 2012. Energy impacts of ICT - Insights from an everyday life perspective. Telemat. Informatics 29, 348-361. https://doi.org/10.1016/j.tele.2012.02.001. Salahuddin, M., Alam, K., 2016. Information and Communication Technology, electricity consumption and economic growth in OECD countries: A panel data analysis. International Journal of Electrical Power & Energy Systems 76, 185–193. https://doi.org/10.1016/j.ijepes.2015.11.005. Schleich J . Barriers to energy efficiency: A comparison across the German commercial and services sector[J]. Ecological Economics, 2009, 68(7):2150-2159. https://doi.org/10.1016/j.ecolecon.2009.02.008 Shao S, Huang T, Yang L. Using latent variable approach to estimate China׳ s economy-wide energy rebound effect over 1954–2010[J]. Energy Policy, 2014, 72: 235-248. https://doi.org/10.1016/j.enpol.2014.04.041 Strubell E, Ganesh A, McCallum A. Energy and policy considerations for deep learning in NLP[J]. arXiv preprint arXiv:1906.02243, 2019. Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet, M., Demeester, P., 2014. Trends in worldwide ICT electricity consumption from 2007 to 2012. Comput. Commun. 50, 64-76. https://doi.org/10.1016/j.comcom.2014.02.008. Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S.D., Tegmark, M., Fuso Nerini, F., 2020. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 11, 1-10. https://doi.org/10.1038/s41467-019-14108-y. Voigt S, De Cian E, Schymura M, et al. Energy intensity developments in 40 major economies: structural change or technology improvement?[J]. Energy Economics, 2014, 41: 47-62. Walker W. Information technology and energy supply[J]. Energy Policy, 1986, 14(6): 466-488. Wang, D., Han, B., 2016. The impact of ICT investment on energy intensity across different regions of China. J. Renew. Sustain. Energy 8(5), 055901. https://doi.org/10.1063/1.4962873. Watson R T, Boudreau M C, Chen A J. Information systems and environmentally sustainable development: energy informatics and new directions for the IS community[J]. MIS quarterly, 2010, 34(1): 23-38. 8. Wrigley E A. Continuity, chance and change: The character of the industrial revolution in England[M]. Cambridge University Press, 1990. Yang J, Ying L, Gao M. The influence of intelligent manufacturing on financial performance and innovation performance: the case of China[J]. Enterprise Information Systems, 2020, 14(6): 812-832. Ye, C., Ye, Q., Shi, X., Sun, Y., 2020. Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries. Energy Policy 137, 111094. https://doi.org/10.1016/j.enpol.2019.111094. Yu E S H, Choi J Y. The causal relationship between energy and GNP: an international comparison[J]. The Journal of Energy and Development, 1985: 249-272. Zhang, Y., Li, H., Li, Y., Zhou, L.A., 2010. FDI spillovers in an emerging market: the role of foreign firms’ country origin diversity and domestic firms’ absorptive capacity. Strateg. Manag. J. 31 (9), 969-989. https://doi.org/10.1002/smj.856. Zheng, Y., Qi, J., Chen, X., 2011. The effect of increasing exports on industrial energy intensity in China. Energy Policy 39, 2688-2698. https://doi.org/10.1016/j.enpol.2011.02.038. Zhou K, Yang S. A framework of service-oriented operation model of China׳ s power system[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 719-725. https://doi.org/10.1016/j.rser.2015.05.041. Zhou, X., Zhou, D., Wang, Q., 2018. How does information and communication technology affect China’s energy intensity? A three-tier structural decomposition analysis. Energy 151, 748-759. https://doi.org/10.1016/j.energy.2018.03.115. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/106333 |