Francq, Christian and Zakoian, Jean-Michel (2021): Local asymptotic normality of general conditionally heteroskedastic and score-driven time-series models.
Preview |
PDF
MPRA_paper_106542.pdf Download (502kB) | Preview |
Abstract
The paper establishes the Local Asymptotic Normality (LAN) property for general conditionally heteroskedastic time series models of multiplicative form, $\epsilon_t=\sigma_t(\btheta_0)\eta_t$, where the volatility $\sigma_t(\btheta_0)$ is a parametric function of $\{\epsilon_{s}, s< t\}$, and $(\eta_t)$ is a standardized i.i.d. noise endowed with a density $f_{\btheta_0}$. In contrast with earlier results, the finite dimensional parameter $\btheta_0$ enters in both the volatility and the density specifications. To deal with non-differentiable functions, we introduce a conditional notion of the familiar quadratic mean differentiability condition which takes into account parameter variation in both the volatility and the errors density. Our results are illustrated on two particular models: the APARCH with Asymmetric Student-$t$ distribution, and the Beta-$t$-GARCH model.
Item Type: | MPRA Paper |
---|---|
Original Title: | Local asymptotic normality of general conditionally heteroskedastic and score-driven time-series models |
Language: | English |
Keywords: | APARCH; Asymmetric Student-$t$ distribution; Beta-$t$-GARCH; Conditional heteroskedasticity; LAN in time series; Quadratic mean differentiability. |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 106542 |
Depositing User: | Christian Francq |
Date Deposited: | 11 Mar 2021 08:37 |
Last Modified: | 11 Mar 2021 08:37 |
References: | Berkes, I., Horv\'ath, L. and P.S. Kokoszka (2003) GARCH processes: structure and estimation. Bernoulli 9, 201--227. Billingsley, P.(1961) The Lindeberg-Levy theorem for martingales. Proceedings of the American Mathematical Society 12, 788--792. Billingsley P. (1999) Convergence of Probability Measures 2nd ed. John Wiley, New York. Blasques, F., Gorgi, P., Koopman, S. J., and O. Wintenberger (2018) Feasible invertibility conditions and maximum likelihood estimation for observation-driven models. Electronic Journal of Statistics 12, 1019--1052. Blasques, F., Koopman, S.J. and A. Lucas (2014) Maximum likelihood estimation for score-driven models. TI 2014-029/III Tinbergen Institute Discussion Paper. Creal, D., Koopman, S. J., and A. Lucas (2008) A general framework for observation driven time-varying parameter models. TI 08-108/4 Tinbergen Institute Discussion Paper. Creal, D., Koopman, S. J., and A. Lucas (2013) Generalized autoregressive score models with applications. Journal of Applied Econometrics 28, 777--795. Drost, F. C. and C. A. J. Klaassen (1997) Efficient estimation in semiparametric GARCH models. Journal of Econometrics 81, 193--221. Drost, F.C., Klaassen, C.A.J. and B.J.M. Werker (1997) Adaptive estimation in time-series models. Annals of Statistics 25, 786--817. %financial applications. John Wiley, Second edition. Francq, C. and J.M. Zako\"ian (2004) Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10, 605--637. Garel, B. and M. Hallin (1995) Local asymptotic normality of multivariate ARMA processes with a linear trend. Annals of the Institute of Statistical Mathematics 47, 551--579. Hallin, M., Taniguchi, M., Serroukh, A., and K. Choy (1999) Local asymptotic normality for regression models with long-memory disturbance. The Annals of Statistics 27, 2054--2080. Hamadeh, T., and J.M. Zako\"ian (2011) Asymptotic properties of LS and QML estimators for a class of nonlinear GARCH Processes. Journal of Statistical Planning and Inference, 141, 488--507. Harvey, A.(2013) Dynamic models for volatility and heavy tails. Cambridge University Press. Harvey, A. C., and T. Chakravarty (2008) Beta-t-(E)GARCH. University of Cambridge, Faculty of Economics, Working Paper CWPE 08340. Jeganathan, P. (1995) Some aspects of asymptotic theory with applications to time series models. Econometric Theory 11, 818--887. Koul, H. L. and A. Schick (1996) Adaptive estimation in a random coefficient autoregressive model. Annals of Statistics 24, 1025--1052. Kreiss, J.P. (1987) On adaptive estimation in stationary ARMA processes. Annals of Statistics 15, 112--133. Lee, S. and M. Taniguchi (2005) Asymptotic theory for ARCH-SM models: LAN and residual empirical processes. Statistica Sinica 15, 215--234. Lehmann, E.L. and J.P. Romano (2006) Testing statistical hypotheses, 3rd edition, Springer-Verlag: New-York. Lehmann, E. L. and J. P. Romano (2006) Testing statistical hypotheses. Third Edition, Springer. Liese, F. and K. J. Miescke (2008) Statistical decision theory. Springer, New York. Lind, B. and G. Roussas (1972) A remark on quadratic mean differentiability. \em The Annals of Mathematical Statistics 43, 1030--1034. Ling, S. and M. McAleer (2003) On adaptative estimation in nonstationary ARMA models with GARCH errors. The Annals of Statistics 31, 642--674. Linton, O. (1993) Adaptive estimation in ARCH models. Econometric Theory 9, 539--569. Robinson, P.M., and P. Zaffaroni (2006) Pseudo-maximum likelihood estimation of ARCH(1) models. The Annals of Statistic 34, 1049--1074. Royer, J. (2021) Conditional asymmetry in Power ARCH($\infty$) models. CREST Discussion paper number 2020-21. Straumann, D., and T. Mikosch (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach. The Annals of Statistics 34, 2449--2495. Swensen, A. R. (1985) The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend. Journal of Multivariate Analysis 16, 54--70. van der Vaart, A.W. (1998) Asymptotic statistics. Cambridge University Press, United Kingdom. Zhu, D., and J.W. Galbraith(2010) A generalized asymmetric Student-$t$ distribution with application to financial econometrics. Journal of Econometrics 157, 297--305. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/106542 |