Drago, Carlo (2021): Interval-Based Composite Indicators with a Triplex Representation: A Measure of the Potential Demand for the "Ristori" Decree in Italy. Forthcoming in: No. 50th Meeting of the Italian Statistical Society, University of Pisa, June 21, 2021 - June 25, 2021, Book of short papers - SIS 2021
Preview |
PDF
MPRA_paper_106904.pdf Download (495kB) | Preview |
Abstract
In this work, we propose a new approach to constructing interval-based composite indicators based on the triplex representation. So, we measure the principal value of the indicator and simultaneously the value's uncertainty due to the different assumptions as different weightings associated how the indicator and their ranks can vary considering different assumptions or weights. The approach is useful not only on the construction of the composite indicators but also for a reliable interpretation of the results. The application shows the usefulness of the approach in detecting the regions higher the potential demand for economic support due to the Covid-19 emergency.
In questo lavoro proponiamo un nuovo approccio alla costruzione di indicatori compositi basati su intervalli, basati sulla rappresentazione triplex. In questo caso siamo in grado di misurare non solo il valore principale dell'indicatore e l'incertezza del valore dovuta alla diversa assunzione come differenti ponderazioni associate ma anche come l'indicatore e il loro rango possono variare considerando differenti assunzioni o pesi. Quindi l'approccio è utile non solo sulla costruzione degli indicatori compositi, ma anche su un'interpretazione affidabile dei risultati.
Item Type: | MPRA Paper |
---|---|
Original Title: | Interval-Based Composite Indicators with a Triplex Representation: A Measure of the Potential Demand for the "Ristori" Decree in Italy. |
Language: | English |
Keywords: | Interval-based Composite Indicators, Composite Indicators, Symbolic Data Analysis, Triplex Representation |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C43 - Index Numbers and Aggregation C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data ; Data Access C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C82 - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data ; Data Access C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C88 - Other Computer Software |
Item ID: | 106904 |
Depositing User: | Carlo Drago |
Date Deposited: | 06 Apr 2021 01:45 |
Last Modified: | 06 Apr 2021 01:45 |
References: | Apostolatos, N., Kulisch, U. Krawczyk, R. Lortz, B. Nickel K. -Wipperman, W. (1968) The Algorithmic Language Triplex-Algol 60. Numerische Mathematik 11 (1968) Billard L. (2010) Symbolic Data Analysis: Basic Statistics. Compstat August 2010. Billard, L., & Diday, E. (2003). From the statistics of data to the statistics of knowledge: symbolic data analysis. Journal of the American Statistical Association, 98(462), 470-487. Drago, C. (2017) Interval Based Composite Indicators. FEEM Working Paper No. 42.2017 Drago, C. (2019) Decomposition of the Interval Based Composite Indicators by Means of Biclustering. CLADAG 2019 12-th Scientific Meeting Classification and Data Analysis Group Cassino, September 11 – 13, 2019 Book of Short Papers/Abstracts Drago, C. (2020) The Analysis and the Measurement of Poverty: An Interval Based Composite Indicator Approach. Preprints 2020, 2020120695 (doi: 10.20944/preprints202012.0695.v1). Gatto, A., & Drago, C. (2020). Measuring and modeling energy resilience. Ecological Economics, 172, 106527. Gioia F. (2009) Portfolio Selection Models with Interval Data. Statistica Applicata Vol. 21, n. 1, 2009 43 Gioia, F., & Lauro, C. N. (2005). Basic statistical methods for interval data. Statistica applicata, 17(1), 75-104. Google Trends (2021) Data source: Google Trends (https://www.google.com/trends) page accessed the 28/2/2021 Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2019). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social Indicators Research, 141(1), 61-94. MEF (2021) Decreto ristori: le misure a favore di chi è in difficoltà https://www.mef.gov.it/covid-19/Decreti-ristori-le-misure-a-favore-di-chi-e-in-difficolta/ Page accessed the 28/2/2021 Nickel K. (1969) Triplex-Algol and its Applications, in Topics in Interval Analysis, E. Hansen, ed., Oxford University Press, Oxford. Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168(2), 307-323. V. A. (2021) Decreto Ristori https://www.pmi.it/tag/decreto-ristori#:~:text=Il%20cosiddetto%20Decreto%20Ristori%2C%20ovvero,ottobre%20e%20pubblicato%20in%20Gazzetta page accessed the 28/2/2021 Williamson, R. C. (1989). Probabilistic arithmetic (Doctoral dissertation, University of Queensland). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/106904 |