Heinrich, Torsten (2021): Epidemics in modern economies.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_107703.pdf Download (1MB) | Preview |
Abstract
How are economies in a modern age impacted by epidemics? In what ways is economic life disrupted? How can pandemics be modeled? What can be done to mitigate and manage the danger? Does the threat of pandemics increase or decrease in the modern world? The Covid-19 pandemic has demonstrated the importance of these questions and the potential of complex systems science to provide answers. This article offers a broad overview of the history of pandemics, of established facts, and of models of infection diffusion, mitigation strategies, and economic impact. The example of the Covid-19 pandemic is used to illustrate the theoretical aspects, but the article also includes considerations concerning other historic epidemics and the danger of more infectious and less controllable outbreaks in the future.
Item Type: | MPRA Paper |
---|---|
Original Title: | Epidemics in modern economies |
Language: | English |
Keywords: | epidemics and economics; public health; complex systems; SIR models; Agent-based models; mean-field models; Covid-19 |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling I - Health, Education, and Welfare > I1 - Health > I10 - General N - Economic History > N3 - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy > N30 - General, International, or Comparative |
Item ID: | 107703 |
Depositing User: | Torsten Heinrich |
Date Deposited: | 18 May 2021 07:50 |
Last Modified: | 18 May 2021 07:50 |
References: | Acemoglu, D., Chernozhukov, V., Werning, I., & Whinston, M. D. (2020, May). Optimal targeted lockdowns in a multi-group SIR model (Working Paper No. 27102). National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w27102 doi: 10.3386/w27102 Alfani, G., & Murphy, T. E. (2017). Plague and lethal epidemics in the pre-industrial world. The Journal of Economic History, 77 (1), 314–343. doi: 10.1017/S0022050717000092 Arrowsmith, D., Beck, C., Benning, M., Bianconi, G., Griffin, J., Huang, W., . . . et al. (2020). Public request to take stronger measures of social distancing across the UK with immediate effect. (Open letter; available online: http://maths.qmul.ac.uk/~vnicosia/UK scientists statement on coronavirus measures.pdf) Arthur, W. B. (1989). Competing technologies, increasing returns, and lock-in by historical events. Economic Journal , 99 (394), 116-31. doi: 10.2307/2234208 Bagni, R., Berchi, R., & Cariello, P. (2002). A comparison of simulation models applied to epidemics. Journal of Artificial Societies and Social Simulation, 5 (3). Retrieved from http://jasss.soc.surrey.ac.uk/5/3/5.html (http://jasss.soc.surrey.ac.uk/5/3/5.html) Baqaee, D., & Farhi, E. (2020, May). Nonlinear production networks with an application to the Covid-19 crisis (Working Paper No. 27281). National Bureau of Economic Research. doi: 10.3386/w27281 Barrot, J.-N., Grassi, B., & Sauvagnat, J. (2020). Sectoral effects of social distancing. HEC Paris Research Paper (FIN-2020-1371). doi: 10.2139/ssrn.3569446 Bronka, P., Collado, D., & Richiardi, M. (2020). The Covid-19 crisis response helps the poor: The distributional and budgetary consequences of the UK lock-down. EUROMOD Working Paper (EM11/20). (http://hdl.handle.net/10419/228410) Brynjolfsson, E., & McAfee, A. (2015). Will humans go the way of horses. Foreign Affairs, 94 , 8. Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. (NBER working paper No. 24001. Preprint online at: https://www.nber.org/system/files/chapters/c14007/c14007.pdf) doi: 10.3386/w24001 Byambasuren, O., Dobler, C. C., Bell, K., Rojas, D. P., Clark, J., McLaws, M.-L., & Glasziou, P. (2020). Comparison of seroprevalence of SARS-CoV-2 infections with cumulative and imputed COVID-19 cases: systematic review. medRxiv . Retrieved from https://www.medrxiv.org/content/early/2020/10/22/2020.07.13.20153163 doi: 10.1101/2020.07.13.20153163 Canning, D. (2006). The economics of HIV/AIDS in low-income countries: the case for prevention. Journal of economic perspectives, 20 (3), 121–142. doi: 10.1257/jep.20.3.121 Casarico, A., & Lattanzio, S. (2020). The heterogeneous effects of COVID-19 on labor market flows: Evidence from administrative data. Covid Economics, 52 , 152-174. Retrieved from https://cepr.org/file/9808 Cincotti, S., Sornette, D., Treleaven, P., Battiston, S., Caldarelli, G., Hommes, C., & Kirman, A. (2012). An economic and financial exploratory. The European Physical Journal Special Topics, 214 (1), 361–400. doi: 10.1140/epjst/e2012-01699-6 Clemens, M. A., & Ginn, T. (2020). Global mobility and the threat of pandemics: Evidence from three centuries. IZA Discussion Paper (13947). Retrieved from http://ftp.iza.org/dp13947.pdf (http://ftp.iza.org/dp13947.pdf) Cohen, J. (2020). Wuhan coronavirus hunter Shi Zhengli speaks out. Science, 369 (6503), 487–488. doi: 10.1126/science.369.6503.487 Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J., & Vespignani, A. (2007, 01). Modeling the worldwide spread of pandemic influenza: Baseline case and containment interventions. PLOS Medicine, 4 (1), 1-16. doi: 10.1371/journal.pmed.0040013 D’Arienzo, M., & Coniglio, A. (2020). Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosafety and Health, 2 (2), 57-59. doi: 10.1016/j.bsheal.2020.03.004 David, P. A. (1985). Clio and the economics of QWERTY. American Economic Review , 75 (2), 332-337. del Rio Chanona, R. M., Mealy, P., Pichler, A., Lafond, F., & Farmer, D. (2020). Supply and demand shocks in the COVID-19 pandemic: An industry and occupation perspective. Covid Economics, 6 , 65-103. Retrieved from https://cepr.org/file/9020 Deslandes, A., Berti, V., Tandjaoui-Lambotte, Y., Alloui, C., Carbonnelle, E., Zahar, J., . . . Cohen, Y. (2020). SARS-CoV-2 was already spreading in France in late December 2019. International Journal of Antimicrobial Agents, 55 (6), 106006. doi: 10.1016/j.ijantimicag.2020.106006 Eichenbaum, M. S., Rebelo, S., & Trabandt, M. (2020, March). The macroeconomics of epidemics (Working Paper No. 26882). National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w26882 doi: 10.3386/w26882 Eigen, M., McCaskill, J., & Schuster, P. (1988). Molecular quasi-species. The Journal of Physical Chemistry, 92 (24), 6881-6891. Embarek, P. B., Fischer, T. K., Dwyer, D., Elmoubasher, F., Watson, J., Koopmans, M., . . . Gao, Y. (2021). WHO-convened global study of origins of SARS-CoV-2: China part. (Available online: https://www.who.int/docs/default-source/coronaviruse/final-joint-report_origins-studies-6-april-201.pdf) Farmer, J. D., Gallegati, M., Hommes, C., Kirman, A., Ormerod, P., Cincotti, S., . . . Helbing, D. (2012). A complex systems approach to constructing better models for managing financial markets and the economy. The European Physical Journal Special Topics, 214 (1), 295–324. doi: http://dx.doi.org/10.1140/epjst/e2012-01696-9 Ferguson, N. M., Cummings, D. A., Fraser, C., Cajka, J. C., Cooley, P. C., & Burke, D. S. (2006). Strategies for mitigating an influenza pandemic. Nature, 442 (7101), 448–452. doi: 10.1038/nature04795 Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., . . . Ghani, A. C. (2020, March). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. 2020 (Report). Imperial College London. Retrieved from https://spiral.imperial.ac.uk/handle/10044/1/77482 doi: 10.25561/77482 Finck, D., & Tillmann, P. (2020). Pandemic shocks and household spending. Covid Economics, 47 , 35-69. Retrieved from https://cepr.org/file/9579 Fontanet, A., & Cauchemez, S. (2020). COVID-19 herd immunity: where are we? Nature Reviews Immunology, 20 (10), 583–584. doi: 10.1038/s41577-020-00451-5 Fukui, M., & Furukawa, C. (2020). Power laws in superspreading events: Evidence from coronavirus outbreaks and implications for SIR models. medRxiv . doi: 10.1101/2020.06.11.20128058 Goldin, I., & Mariathasan, M. (2014). The butterfly defect. Princeton: Princeton University Press. doi: 10.2307/j.ctt5hhqgq Gómez-Pineda, J. G. (2020). Growth forecasts and the Covid-19 recession they convey. Covid Economics, 40 , 211-228. Retrieved from https://cepr.org/file/9426 Gräbner, C., Bale, C. S., Furtado, B. A., Alvarez-Pereira, B., Gentile, J. E., Henderson, H., & Lipari, F. (2019). Getting the best of both worlds? developing complementary equation-based and agent-based models. Computational Economics, 53 (2), 763–782. doi: 10.1007/s10614-017-9763-8 Green, A. (2020). Li Wenliang. The Lancet, 395 (10225), 682. doi: 10.1016/S0140-6736(20)30382-2 Haldane, A. G. (2020). The second quarter. (Speech, given during an online webinar, https://www.bankofengland.co.uk/-/media/boe/files/speech/2020/the-second-quarter-speech-by-andy-haldane.pdf) Inoue, H., & Todo, Y. (2020, 09). The propagation of economic impacts through supply chains: The case of a mega-city lockdown to prevent the spread of COVID-19. PLOS ONE , 15 (9), 1-10. doi: 10.1371/journal.pone.0239251 Jena, N. R. (2020). Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Phys. Chem. Chem. Phys., 22 , 28115-28122. doi: 10.1039/D0CP05297C Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , 115 (772), 700-721. doi: 10.1098/rspa.1927.0118 Koch, A., Brierley, C., Maslin, M. M., & Lewis, S. L. (2019). Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quaternary Science Reviews, 207 , 13-36. doi: 10.1016/j.quascirev.2018.12.004 La Maestra, S., Abbondandolo, A., & De Flora, S. (2020). Epidemiological trends of COVID-19 epidemic in Italy over March 2020: From 1000 to 100 000 cases. Journal of medical virology, 92 (10), 1956–1961. doi: 10.1002/jmv.25908 Li, R., Richmond, P., & Roehner, B. M. (2018). Effect of population density on epidemics. Physica A: Statistical Mechanics and its Applications, 510 , 713–724. doi: 10.1016/j.physa.2018.07.025 Livi-Bacci, M. (2006). The depopulation of Hispanic America after the conquest. Population and Development Review , 32 (2), 199-232. doi: 10.1111/j.1728-4457.2006.00116.x Madhav, N., Oppenheim, B., Gallivan, M., Mulembakani, P., Rubin, E., & Wolfe, N. (2017). Pandemics: Risks, impacts, and mitigation (3rd ed.). The International Bank for Reconstruction and Development / The World Bank, Washington (DC). Retrieved from http://europepmc.org/books/NBK525302 Mattana, E., Smeets, V., & Warzynski, F. (2020). Changing skill structure and COVID-19. Covid Economics, 45 , 1-30. Retrieved from https://cepr.org/file/9548 Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2020). Sewage analysis as a tool for the COVID-19 pandemic response and management: the urgent need for optimised protocols for SARS-CoV-2 detection and quantification. Journal of environmental chemical engineering, 8 (5), 104306. doi: 10.1016/j.jece.2020.104306 Morabia, A. (2020). Pandemics and methodological developments in epidemiology history. Journal of Clinical Epidemiology, 125 , 164-169. doi: 10.1016/j.jclinepi.2020.06.008 Morens, D. M., & Fauci, A. S. (2007, 04). The 1918 Influenza Pandemic: Insights for the 21st Century. The Journal of Infectious Diseases, 195 (7), 1018-1028. doi: 10.1086/511989 Morens, D. M., Folkers, G. K., & Fauci, A. S. (2008). Emerging infections: a perpetual challenge. The Lancet infectious diseases, 8 (11), 710–719. doi: 10.1016/S1473-3099(08)70256-1 Morikawa, M. (2020). Productivity of working from home during the COVID-19 pandemic: Evidence from an employee survey. Covid Economics, 49 , 123-147. Retrieved from https://cepr.org/file/9658 Muniz-Rodriguez, K., Chowell, G., Cheung, C.-H., Jia, D., Lai, P.-Y., Lee, Y., . . . others (2020). Doubling time of the COVID-19 epidemic by province, China. Emerging infectious diseases, 26 (8), 1912. doi: 10.3201/eid2608.200219 Newman, M. E. J. (2002, Jul). Spread of epidemic disease on networks. Phys. Rev. E , 66 , 016128. doi: 10.1103/PhysRevE.66.016128 Pastore y Piontti, A., Perra, N., Rossi, L., Samay, N., & Vespignani, A. (2019). Charting the next pandemic: Modeling infectious disease spreading in the data science age. Cham: Springer. doi: 10.1007/978-3-319-93290-3 2 Pichler, A., Pangallo, M., del Rio-Chanona, R. M., Lafond, F., & Doyne Farmer, J. (2020). Production networks and epidemic spreading: How to restart the UK economy? Covid Economics, 28 , 79-151. Retrieved from https://cepr.org/file/9098 Piret, J., & Boivin, G. (2021). Pandemics throughout history. Frontiers in Microbiology, 11 . doi: 10.3389%2Ffmicb.2020.631736 Pissarides, C. (2020). As Covid-19 accelerates automation, how do we stop the drift into long-term unemployment? LSE Business Review. Retrieved from https://blogs.lse.ac.uk/businessreview/2020/07/21/as-covid-19-accelerates-automation-how-do-we-stop-the-drift-into-long-term-unemployment/ Platto, S., Xue, T., & Carafoli, E. (2020). COVID19: an announced pandemic. Cell Death & Disease, 11 (9), 1–13. doi: 10.1038/s41419-020-02995-9 Richiardi, M., Bronka, P., & Collado, D. (2020). The economic consequences of COVID-19 lockdown in the UK. an input-output analysis using consensus scenarios. (Working paper. Available at: https://www.iser.essex.ac.uk/files/news/2020/consensus/employment-effects-covid-19-uk-v2.pdf) Ross, R. (1916). An application of the theory of probabilities to the study of a priori pathometry. - Part I. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character , 92 (638), 204-230. doi: 10.1098/rspa.1916.0007 Saunders-Hastings, P., & Krewski, D. (2016, Dec). Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens, 5 (4), 66. doi: 10.3390/pathogens5040066 Sharkey, K. J. (2008). Deterministic epidemiological models at the individual level. Journal of Mathematical Biology, 57 (3), 311–331. doi: 10.1007/s00285-008-0161-7 Sharma, D., Bouchaud, J.-P., Gualdi, S., Tarzia, M., & Zamponi, F. (2020). Economic recovery after COVID-19? insights from an agent-based model1. Covid Economics, 40 , 164-179. Retrieved from https://cepr.org/file/9426 Trevisanato, S. I. (2007). The ’Hittite plague’, an epidemic of tularemia and the first record of biological warfare. Medical Hypotheses, 69 (6), 1371-1374. doi: 10.1016/j.mehy.2007.03.012 Youngblood, R. (1962). Amorite influence in a Canaanite Amarna letter (EA 96). Bulletin of the American Schools of Oriental Research, 168 , 24-27. doi: 10.2307/1356031 Yuan, Z., Xiao, Y., Dai, Z., Huang, J., Zhang, Z., & Chen, Y. (2020). Modelling the effects of Wuhan’s lockdown during COVID-19, China. Bulletin of the World Health Organization, 98 (7), 484. doi: 10.2471/BLT.20.254045 Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., . . . others (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579 (7798), 270–273. doi: 10.1038/s41586-020-2012-7 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/107703 |
Available Versions of this Item
-
Epidemics in modern economies. (deposited 06 May 2021 13:43)
- Epidemics in modern economies. (deposited 18 May 2021 07:50) [Currently Displayed]