Accolley, Delali (2021): Some Markov-Switching Models for the Toronto Stock Exchange.
Preview |
PDF
MPRA_paper_108072.pdf Download (1MB) | Preview |
Abstract
This research motivates the use of Markov chains in modeling financial time series. Then, it explains the returns and the volatility on the Toronto Stock Exchange (TSX) using some Markov-switching models. These models are: the conditional capital asset pricing model, the conditional Sharpe model, and the exponential autoregressive model with state-dependent heteroscedasticity. It also tests for cointégration between the TSX and some other major exchanges, relying on the first-order and the second-order Markov chains.
The asymmetry, the multiple peaks, or the fat tails in the distribution of the returns on the TSX and on the other exchanges indicates they could not be modelled as random realizations from a single normal distribution. The switching regressions turn out to have a greater explanatory power and provide further understanding of the TSX.
ABSTRACT IN FRENCH- Cette recherché justifie l’utilisation des chaînes de Markov dans la modélisation des séries chronologiques financières. Ensuite, elle explique les rendements et la volatilité sur la Bourse de Toronto (TSX) en utilisant quelques modèles de Markov à changement de régime. Ces modèles sont : le modèle conditionnel d’évaluation des actifs financiers, le modèle conditionnel de Sharpe et le modèle autorégressif exponentiel avec une hétéroscedasdacité conditionnelle qui dépend du régime.Elle teste également la cointégration entre le TSX et d’autres bourses, en s’appuyant sur les chaînes de Markov de premier et de second ordre.
L’asymétrie, les nombreux pics ou l’épaisseur des queues de la distribution des rendements sur la TSX et sur les autres bourses indiquent qu’ils ne peuvent pas être modélisés comme étant des réalisations aléatoires provenant d’une seule distribution normale. Il s’avère que les régressions avec changement de régime ont un plus grand pouvoir explicatif et fournissent une meilleure compréhension du TSX.
Item Type: | MPRA Paper |
---|---|
Original Title: | Some Markov-Switching Models for the Toronto Stock Exchange |
English Title: | Some Markov-Switching Models for the Toronto Stock Exchange |
Language: | English |
Keywords: | Econometrics, Finance, Markov Chain |
Subjects: | G - Financial Economics > G0 - General G - Financial Economics > G1 - General Financial Markets G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O16 - Financial Markets ; Saving and Capital Investment ; Corporate Finance and Governance |
Item ID: | 108072 |
Depositing User: | Delali Accolley |
Date Deposited: | 07 Jun 2021 10:19 |
Last Modified: | 07 Jun 2021 10:19 |
References: | Abdymomunov, A., and J. Morley (2011): “Time variation of CAPM betas across market volatility regimes,” Applied Financial Economics, 21(19), 1463–1478. Barten, A. P. (1987): “The coefficient of determination for regression without a constant term,” in The Practice of Econometrics, pp. 181–189. Springer. Bauwens, L., A. Preminger, and J. V. Rombouts (2010): “Theory and inference for a Markov switching GARCH model,” The Econometrics Journal, 13(2), 218–244. Bollerslev, T. (1986): “Generalized autoregressive conditional heteroskedasticity,” Journal of econometrics, 31(3), 307–327. Breeden, D. (1979): “An lntertemporal Asset Pricing Model with Stochastic Investment and Consumption Opportunities,” Journal of Financial Economics, 6, 273–296. Casella, G., and R. L. Berger (2002): Statistical inference, vol. 2. Duxbury Pacific Grove, CA. Davidson, R., and J. G. MacKinnon (1993): Estimation and inference in econometrics. Oxford University Press. Dickey, D. A., and W. A. Fuller (1979): “Distribution of the estimators for autoregressive time series with a unit root,” Journal of the American statistical association, 74(366a), 427–431. Eisenhauer, J. G. (2003): “Regression through the origin,” Teaching statistics, 25(3), 76–80. Engle, R. (2002): “Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models,” Journal of Business & Economic Statistics, 20(3), 339–350. Engle, R. F. (1982): “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation,” Econometrica: Journal of the Econometric Society, pp. 987–1007. Engle, R. F., and C. W. Granger (1987): “Co-integration and error correction: representation, estimation, and testing,” Econometrica: journal of the Econometric Society, pp. 251–276. Episcopos, A. (1996): “Stock return volatility and time-varying betas in the Toronto Stock Exchange,” Quarterly Journal of Business and Economics, pp. 28–38. Fama, E. F., and K. R. French (2004): “The capital asset pricing model: Theory and evidence,” The Journal of Economic Perspectives, 18(3), 25–46. Fan, J., and Q. Yao (2008): Nonlinear time series: nonparametric and parametric methods. Springer Science & Business Media. Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993): “On the relation between the expected value and the volatility of the nominal excess return on stocks,” The journal of finance, 48(5), 1779–1801. Gray, S. F. (1996): “Modeling the conditional distribution of interest rates as a regime switching process,” Journal of Financial Economics, 42(1), 27–62. Greene, W. H. (2000): “Econometric analysis (International edition),” . Gregory, A. W., and B. E. Hansen (1996): “Residual-based tests for cointégration in models with regime shifts,” Journal of Econometrics, 70, 99–126. Haggan, V., and T. Ozaki (1981): “Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model,” Biometrika, 68(1), 189–196. Hamilton, J. D. (1990): “Analysis of time series subject to changes in regime,” Journal of econometrics, 45(1-2), 39–70. Hamilton, J. D. (1994): Time series analysis, vol. 2. Princeton university press Princeton. Hamilton, J. D., and G. Lin (1996): “Stock market volatility and the business cycle,” Journal of Applied Econometrics, 11(5), 573–593. Hamilton, J. D., and R. Susmel (1994): “Autoregressive conditional heteroskedasticity and changes in regime,” Journal of econometrics, 64(1-2), 307–333. Henriksson, R. D., and R. C. Merton (1981): “On market timing and investment performance. II. Statistical procedures for evaluating forecasting skills,” Journal of business, pp. 513–533. Jagannathan, R., and Z. Wang (1996): “The conditional CAPM and the crosssection of expected returns,” The Journal of finance, 51(1), 3–53. Johansen, S. (1988): “Statistical analysis of cointegration vectors,” Journal of economic dynamics and control, 12(2), 231–254. Khan, T. A. (2011): “Cointegration of international stock markets: An investigation of diversification opportunities,” Undergraduate Economic Review, 8(1), 7. Kose, M. A., S. Claessens, and M. E. Terrones (2011): “Financial Cycles: What? How? When?,” . Kritzman, M., S. Page, and D. Turkington (2012): “Regime shifts: Implications for dynamic strategies (corrected),” Financial Analysts Journal, 68(3), 22–39. Lam, K. S. (2001): “The conditional relation between beta and returns in the Hong Kong stock market,” Applied Financial Economics, 11(6), 669–680. LeBaron, B. (1992): “Some relations between volatility and serial correlations in stock market returns,” Journal of Business, pp. 199–219. Li, Q., and J. S. Racine (2007): Nonparametric econometrics: theory and practice. Princeton University Press. Ling, S., and M. McAleer (2002): “Stationarity and the existence of moments of a family of GARCH processes,” Journal of Econometrics, 106(1), 109–117. Mankiw, N. G., and M. D. Shapiro (1984): “Risk and return: Consumption versus market beta,” . Mehra, R., and E. C. Prescott (1985): “The equity premium: A puzzle,” Journal of monetary Economics, 15(2), 145–161. MSCI Barra, and Standard & Poors (2018): “Global industry classification standard (gics),” Discussion paper, Technical report, Standard & Poors. Narayan, P. K., and R. Smyth (2004): “Modelling the linkages between the Australian and G7 stock markets: common stochastic trends and regime shifts,” Applied Financial Economics, 14(14), 991–1004. Narayan, P. K., and R. Smyth (2005): “Cointegration Of Stock Markets Between New Zealand, Australia And The G7 Economies: Searching For Co-Movement Under Structural Change,” Australian Economic Papers, 44(3), 231–247. Nelson, D. B. (1991): “Conditional heteroskedasticity in asset returns: A new approach,” Econometrica: Journal of the Econometric Society, pp. 347–370. Ozaki, T. (1980): “Non-linear time series models for non-linear random vibrations,” Journal of Applied Probability, pp. 84–93. Pettengill, G. N., S. Sundaram, and I. Mathur (1995): “The conditional relation between beta and returns,” Journal of Financial and quantitative Analysis, 30(1), 101–116. Pfaff, B., E. Zivot, M. Stigler, and M. B. Pfaff (2016): “Package ’urca’,” Unit root and cointegration tests for time series data. R package version, pp. 1–2. Ruppert, D. (2011): Statistics and data analysis for financial engineering, vol. 13. Springer. Sargent, T. J. (1987): Dynamic Macroeconomic Theory. Sharpe, W. F. (1992): “Asset allocation: Management style and performance measurement,” Journal of portfolio Management, 18(2), 7–19. Stockey, N. L., R. E. Lucas Jr, and E. C. Prescott (1989): Recursive Methods in Economic Dynamics. Tu, J. (2010): “Is regime switching in stock returns important in portfolio decisions?,” Management Science, 56(7), 1198–1215. Van Norden, S., and H. Schaller (1993): “The predictability of stock market regime: evidence from the Toronto Stock Exchange,” The Review of Economics and Statistics, pp. 505–510. Vendrame, V., C. Guermat, and J. Tucker (2018): “A conditional regime switching CAPM,” International Review of Financial Analysis, 56, 1–11. Verbeek, M. (2008): A guide to modern econometrics. John Wiley & Sons. Zucchini, W., and I. L. MacDonald (2009): Hidden Markov models for time series: an introduction using R. CRC press. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/108072 |