Herrera-Gómez, Marcos and Cid, Juan Carlos (2021): Variabilidad Espacial en los determinantes de la Fecundidad de Argentina (2001-2010). Un enfoque por Regresiones Geográficamente Ponderadas.
Preview |
PDF
MPRA_paper_109282.pdf Download (953kB) | Preview |
Abstract
The relationship between fertility and its determinants may be conditioned by social behaviors at the local level. Using geographic information as an approximation of social interactions, this paper analyzes the heterogeneity of the impact of socioeconomic conditions on departmental fertility in Argentina. Using Census data for 2001 and 2010, the fertility among women between 25 and 29 years of age is dependent on socioeconomic variables such as educational level, poverty situation and degree of urbanization, among others. The most significant contribution is the use of geographically weighted regressions (GWR), a technique that makes it possible to detect the presence of a non-stationary spatial process. This means that the linear relationship investigated is not homogeneous throughout the territory, but that the intensity of the effect of the explanatory factors varies locally. The evidence found highlights the need to use econometric techniques that incorporate geographical heterogeneity. Additionally, our results make it possible to distinguish the stage of the demographic transition achieved in different regions of Argentina, highlighting the restrictions posed by material well-being and educational level; and also serve as an input to public policies that seek to include population growth within their objectives.
Item Type: | MPRA Paper |
---|---|
Original Title: | Variabilidad Espacial en los determinantes de la Fecundidad de Argentina (2001-2010). Un enfoque por Regresiones Geográficamente Ponderadas |
English Title: | Spatial Variability in the determinants of Fertility in Argentina (2001-2010). A Geographically Weighted Regression Approach |
Language: | Spanish |
Keywords: | fertility; social interactions; spatial heterogeneity; GWR |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions J - Labor and Demographic Economics > J1 - Demographic Economics > J13 - Fertility ; Family Planning ; Child Care ; Children ; Youth |
Item ID: | 109282 |
Depositing User: | marcos herrera |
Date Deposited: | 21 Aug 2021 05:54 |
Last Modified: | 21 Aug 2021 05:54 |
References: | Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers. Becker, G. (1960). An economic analysis of fertility, en National Bureau of Economic Research (Ed.), Demographic and economic change in developed countries, Princeton: Princeton University Press. Brock, W. & Durlauf, S. (2001). Interaction-based models, en J. Heckman & E. Leamer (Eds.), Handbook of Econometrics, Amsterdam: North-Holland. Brunsdon, C., Fotheringham, A. & Martin, C. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity, Geographical analysis, 28(4): 281-298. Brunsdon, C., Fotheringham, A. & Martin, C. (1998). Geographically weighted regression, Journal of the Royal Statistical Society: Series D (The Statistician), 47(3): 431-443. Calvo, E. & Escolar, M. (2003). The local voter: a geographically weighted approach to ecological inference, American Journal of Political Science, 47(1): 189-204. CELADE/CEPAL (1996). Impacto de las tendencias demográficas sobre los sectores sociales en América Latina: contribución al diseño de políticas y programas. Santiago de Chile: CEPAL/BID. Chackiel, J. (2004). La transición de la fecundidad en América Latina 1950-2000, Papeles de Población, 10(41): 9-58. Chackiel, J. & Martínez-Pizarro, J. (1992). “La Transición demográfica en América Latina y el Caribe desde 1950”, en IV Conferencia Latinoamericana de Población, Vol. 1., Santiago de Chile: CELADE. Charlton, M. & Brunsdon, C. (1997). Two techniques for exploring non-stationarity in geographical data, Geographical Systems, 4: 59-82. Conley, T. & Topa, G. (2002). Socio-economic distance and spatial patterns in unemployment, Journal of Applied Econometrics, 17(4): 303-327. Durlauf, S. & Walker, J. (2001). Social interactions and fertility transition, en J. Carterline (Ed.), Diffusion processes and fertility transition: Selected Perspectives, Washington: National Academy Press. Fotheringham, A. (1997). Trends in quantitative methods 1: stressing the local, Progress in Human Geography, 21: 88-96. Fotheringham, A., Charlton, M. & Brunsdon, C. (2001). Spatial variations in school performance: a local analysis using geographically weighted regression, Geographical and Environmental Modelling, 5(1): 43-66. Fotheringham, A., Charlton, M. & Brunsdon, C. (2002). Geographically weighted regression: the analysis of spatially varying relationships. New York: Wiley & Sons. Huang, Y. & Lueng, Y. (2002). Analysing regional industrialisation in Jiangsu province using geographically weighted regression, Journal of Geographical Systems, 4(2): 233-249. Lanza, N. & Valeggia, C. (2014). Cambios demográficos en una población rural de la etnia Toba del norte de Argentina, Latin American Research Review, 49(2): 107-128. López, E. & Mario, S. (2009). La fecundidad en la Argentina 1996-2006: convergencias y divergencias, Población, 2(4): 41-57. Lu, B., Charlton, M., Harris, P. & Fotheringham, A. (2014). Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data, International Journal of Geographical Information Science, 28(4): 660-681. Manski, C. (1993). Identification of endogenous social effects: The reflection problem, The Review of Economic Studies, 60(3): 531-542. Mario, S. & Pantelides, E. (2011). “Análisis regional de los determinantes próximos de la fecundidad en la Argentina”, en XI Jornadas Argentinas de Estudios de Población. Asociación de Estudios de Población de la Argentina, Neuquén. McMillen, D. (2004). Employment densities, spatial autocorrelation, and subcenters in large metropolitan areas, Journal of Regional Science, 44(2): 225-244. Moran, P. (1950). Notes on continuous stochastic phenomena, Biometrika, 37(1-2): 17-23. Nakaya, T., Charlton, M., Fotheringham, A. & Brunsdon, C. (2014). GWR4 version 4.0.80. Application for geographically weighted regression modeling, National Centre for Geocomputation, National University of Ireland Maynooth and Department of Geography, Japon: Ritsumeikan University. Nakaya, T., Fotheringham, A., Charlton, M. & Brunsdon, C. (2009). Semiparametric geographically weighted generalised linear modelling in GWR 4.0, en B. Lees & S. Laffan (Eds.), 10th International Conference on GeoComputation, Sydney: UNSW. Pantelides, E. & Rofman, A. (1983). La transición demográfica argentina: un modelo no ortodoxo, Desarrollo Económico, 22(8): 511-534. Schultz, P. (1981). Economics of population. Reading: Addison-Wisley. Schultz, P. (2002). Fertility transition: economic explanations, en N. Smelser y P. Baltes, International encyclopedia of the Social and Behavioral Sciences, Oxford: Pergamon. Topa, G. (2001). Social interactions, local spillovers and unemployment, The Review of Economic Studies, 68(2): 261-295. Wang, Q., Ni, J. & Tenhunen, J. (2005). Application of a geographically- weighted regression analysis to estimate net primary production of Chinese forest ecosystems, Global Ecology and Biogeography, 14(4): 379-393. Weeks, J. (2003). The role of spatial analysis in demographic research, en M. Goodchild & D. Janelle (Eds.), Spatially integrated social science: examples in best practice, New York: Oxford University Press. Weeks, J., Getis, A., Hill, A., Gadalla, S. & Rashed, T. (2004). The fertility transition in Egypt: intraurban patterns in Cairo, Annals of the Association of American Geographers, 94(1): 74-93. Xu, Z. & Ouyang, A. (2018). The Factors Influencing China’s population distribution and spatial heterogeneity: a prefectural-level analysis using geographically weighted regression, Applied Spatial Analysis and Policy, 11(3): 465-480. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/109282 |