Logo
Munich Personal RePEc Archive

Modélisation et prévision du nombre d’infections au coronavirus au Togo: une approche par un modèle ARIMA avec le logiciel R

Kadanga, Mayo Takémsi Norris and Togbenu, Fo-Kossi Edem (2021): Modélisation et prévision du nombre d’infections au coronavirus au Togo: une approche par un modèle ARIMA avec le logiciel R.

This is the latest version of this item.

[img]
Preview
PDF
MPRA_paper_110535.pdf

Download (649kB) | Preview

Abstract

In this paper, we attempt to propose a short-term prediction model of the number of new cases of coronavirus infections in Togo using the R software. From the original daily data, a new weekly database containing 80 observations was constructed. After splitting this new database into training and test samples in order to select the appropriate model, the database was then used to build our forecasting model, the ARIMA(2,1,2) model. This model was used to make forecasts for the next four weeks. The findings show that Togo can expect approximately 1200 infections in average every week if suitable measures are not adopted in order to stop the rapid spread of the virus in the country.

Available Versions of this Item

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.