Yang, Jangho and Heinrich, Torsten and Winkler, Julian and Lafond, François and Koutroumpis, Pantelis and Farmer, J. Doyne (2022): Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_112827.pdf Download (2MB) | Preview |
Abstract
It is well-known that value added per worker is extremely heterogeneous among firms, but relatively little has been done to characterize this heterogeneity more precisely. Here we show that the distribution of value-added per worker exhibits heavy tails, a very large support, and consistently features a proportion of negative values, which prevents log transformation. We propose to model the distribution of value added per worker using the four parameter Lévy stable distribution, a natural candidate deriving from the Generalised Central Limit Theorem, and we show that it is a better fit than key alternatives. Fitting a distribution allows us to capture dispersion through the tail exponent and scale parameters separately. We show that these parametric measures of dispersion are at least as useful as interquantile ratios, through case studies on the evolution of dispersion in recent years and the correlation between dispersion and intangible capital intensity.
Item Type: | MPRA Paper |
---|---|
Original Title: | Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution |
Language: | English |
Keywords: | productivity, dispersion, distribution, heavy-tail, Lévy stable distribution |
Subjects: | D - Microeconomics > D2 - Production and Organizations J - Labor and Demographic Economics > J2 - Demand and Supply of Labor > J24 - Human Capital ; Skills ; Occupational Choice ; Labor Productivity O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity |
Item ID: | 112827 |
Depositing User: | Torsten Heinrich |
Date Deposited: | 28 Apr 2022 11:36 |
Last Modified: | 28 Apr 2022 13:24 |
References: | Acemoglu, D., Ozdaglar, A. & Tahbaz-Salehi, A. (2017), ‘Microeconomic origins of macroeconomic tail risks’, American Economic Review 107(1), 54–108. Andrews, D., Criscuolo, C. & Gal, P. N. (2016), ‘The best versus the rest’, OECD Productivity Working Papers 05. Aoyama, H., Fujiwara, Y. & Gallegati, M. (2015), ‘Micro-macro relation of production: double scaling law for statistical physics of economy’, Journal of Economic Interaction and Coordination 10(1), 67–78. Aoyama, H., Yoshikawa, H., Iyetomi, H. & Fujiwara, Y. (2009), ‘Labour productivity superstatistics’, Progress of Theoretical Physics, Supplement 179, 80–92. Aoyama, H., Yoshikawa, H., Iyetomi, H. & Fujiwara, Y. (2010), ‘Productivity dispersion: facts, theory, and implications’, Journal of Economic Interaction and Coordination 5(1), 27–54. Aradanaz-Badia, A., Awano, G. & Wales, P. (2017), ‘Understanding firms in the bottom 10% of the labour productivity distribution in great britain:“the laggards”, 2003 to 2015’, Office for National Statistics . Asquith, W. (2018), lmomco - L-moments, censored L-moments, trimmed L-moments, L-comoments, and many distributions. R package version 2.3.1. Asquith, W. H. (2014), ‘Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R’, Computational Statistics & Data Analysis 71, 955 – 970. Axtell, R. & Guerrero, O. (forthcoming), ‘Dynamics of firms from the bottom up: Data, theories and models’. Axtell, R. L. (2001), ‘Zipf distribution of U.S. firm sizes’, Science 293(5536), 1818–1820. Ayebo, A. & Kozubowski, T. J. (2003), ‘An asymmetric generalization of gaussian and laplace laws’, Journal of Probability and Statistical Science 1(2), 187–210. Baily, M. N., Bartelsman, E. J. & Haltiwanger, J. (1996), ‘Downsizing and productivity growth: myth or reality?’, Small Business Economics 8(4), 259–278. Bartelsman, E., Haltiwanger, J. & Scarpetta, S. (2013), ‘Cross-country differences in productivity: The role of allocation and selection’, American Economic Review 103(1), 305–34. Bartelsman, E. J. & Doms, M. (2000), ‘Understanding productivity: Lessons from longitudinal microdata’, Journal of Economic Literature 38(3), 569–594. Bartelsman, E. J. & Wolf, Z. (2018), Measuring productivity dispersion, in E. Grifell-Tatjé, C. K. Lovell & R. C. Sickles, eds, ‘Oxford Handbook of Productivity Analysis’, Oxford University Press, United Kingdom. Bartkiewicz, K., Jakubowski, A., Mikosch, T. & Wintenberger, O. (2011), ‘Stable limits for sums of dependent infinite variance random variables’, Probability Theory and Related Fields 150(3), 337–372. Berlingieri, G., Blanchenay, P., Calligaris, S. & Criscuolo, C. (2017), ‘The multiprod project: A comprehensive overview’, OECD Science, Technology and Industry Working Papers 2017(4), 1. Berlingieri, G., Blanchenay, P. & Criscuolo, C. (2017), ‘The great divergence(s)’, OECD STI Policy Papers 39. Bontadini, F., Corrado, C., Haskel, J., Iommi, M. & Jona-Lasinio, C. (2021), ‘Euklems & intanprod: methods and data descriptions’, EU KLEMS website . https://euklems-intanprod-llee.luiss.it/wp-content/uploads/2022/02/EUKLEMSINTANProd_2021_Methods-and-data-description-Rev1.pdf. Bottazzi, G. (2014), Subbotools user’s manual: For version 0.9. 7.1, 8 september 2004, Technical report, LEM Working Paper Series. Originally published 2004, updated 2014, http://www.lem.sssup.it/WPLem/files/2004-14.pdf. Bottazzi, G., Cefis, E., Dosi, G. & Secchi, A. (2007), ‘Invariances and diversities in the patterns of industrial evolution: Some evidence from italian manufacturing industries’, Small Business Economics 29(1-2), 137–159. Bottazzi, G. & Secchi, A. (2003), ‘Common properties and sectoral specificities in the dynamics of US manufacturing companies’, Review of Industrial Organization 23(3), 217–232. Bottazzi, G. & Secchi, A. (2011), ‘A new class of asymmetric exponential power densities with applications to economics and finance’, Industrial and Corporate Change 20(4), 991–1030. Bouchaud, J.-P. & Potters, M. (2003), Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2 edn, Cambridge University Press. Campbell, S., Nguyen, T., Sibelle, A. & Soriano, F. (2019), ‘Measuring productivity dispersion in selected australian industries’, Treasury-ABS Working Paper . Canty, A. & Ripley, B. D. (2021), boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28. Cette, G., Corde, S. & Lecat, R. (2018), ‘Firm-level productivity dispersion and convergence’, Economics Letters 166, 76–78. Clauset, A., Shalizi, C. R. & Newman, M. E. (2009), ‘Power-law distributions in empirical data’, SIAM review 51(4), 661–703. Cohen, J. E., Davis, R. A. & Samorodnitsky, G. (2020), ‘Heavy-tailed distributions, correlations, kurtosis and taylor’s law of fluctuation scaling’, Proceedings of the Royal Society A 476(2244), 20200610. Corrado, C., Criscuolo, C., Haskel, J., Himbert, A. & Jona-Lasinio, C. (2021), ‘New evidence on intangibles, diffusion and productivity’, OECD STI Working Papers 2021/10. Cunningham, C., Foster, L., Grim, C., Haltiwanger, J., Pabilonia, S. W., Stewart, J. & Wolf, Z. (2021), ‘Dispersion in dispersion: Measuring establishment-level differences in productivity’, IZA Discussion Paper 14459. De Loecker, J., Obermeier, T. & Van Reenen, J. (2022), Firms and inequalities, in IFS, ed., ‘The IFS Deaton Review of Inequalities’, IFS. Delicado, P. & Goria, M. (2008), ‘A small sample comparison of maximum likelihood, moments and l-moments methods for the asymmetric exponential power distribution’, Computational Statistics & Data Analysis 52(3), 1661–1673. Embrechts, P., Kluppelberg, C. & Mikosch, T. (1997), Time series analysis for heavy-tailed processes, in ‘Modelling Extremal Events,’, Springer, Berlin, Heidelberg, pp. 371–412. Fagiolo, G., Napoletano, M. & Roventini, A. (2008), ‘Are output growth-rate distributions fat-tailed? some evidence from oecd countries’, Journal of Applied Econometrics 23(5), 639–669. Fama, E. F. (1965), ‘Portfolio analysis in a stable Paretian market’, Management Science 11(3), 404–419. Foster, L., Grim, C., Haltiwanger, J. C. & Wolf, Z. (2021), Innovation, productivity dispersion, and productivity growth, in C. Corrado, J. Haskel, J. Miranda & D. Sichel, eds, ‘Measuring and Accounting for Innovation in the Twenty-First Century’, University of Chicago Press, p. 103. Friedman, J. H., Hastie, T. & Tibshirani, R. (2010), ‘Regularization paths for generalized linear models via coordinate descent’, Journal of Statistical Software 33(1), 1–22. Gabaix, X. (2009), ‘Power laws in economics and finance’, Annual Review of Economics 1(1), 255–294. Gabaix, X. (2011), ‘The granular origins of aggregate fluctuations’, Econometrica 79(3), 733–772. Gaffeo, E. (2008), ‘Lévy-stable productivity shocks’, Macroeconomic Dynamics 12(3), 425–443. Gaffeo, E. (2011), ‘The distribution of sectoral TFP growth rates: International evidence’, Economics Letters 113(3), 252–255. Ghiglino, C. (2012), ‘Random walk to innovation: Why productivity follows a power law’, Journal of Economic Theory 147(2), 713–737. Goldin, I., Koutroumpis, P., Lafond, F. & Winkler, J. (2021), ‘Why is productivity slowing down?’, INET Oxford Working Paper . Gopinath, G., Kalemli-Özcan, Ş., Karabarbounis, L. & Villegas-Sanchez, C. (2017), ‘Capital allocation and productivity in south europe’, The Quarterly Journal of Economics 132(4), 1915–1967. Gouin-Bonenfant, E. (2020), ‘Productivity dispersion, between-firm competition and the labor share’, Draft. Gu, W. (2019), ‘Frontier firms, productivity dispersion and aggregate productivity growth in canada’, International Productivity Monitor (37), 96–119. Haldane, A. (2017), ‘Productivity puzzles’, Speech given by Andy Haldane, Chief Economist, Bank of England at the London School of Economics . Haltiwanger, J., Kulick, R. & Syverson, C. (2018), ‘Misallocation measures: The distortion that ate the residual’, NBER Working Paper 24199. Heinrich, T. & Winkler, J. (2020), finity: Test for Finiteness of Moments in a Distribution. R package version 0.1.4.1. URL: https://CRAN.R-project.org/package=finity Holly, S., Petrella, I. & Santoro, E. (2013), ‘Aggregate fluctuations and the cross-sectional dynamics of firm growth’, Journal of the Royal Statistical Society: Series A (Statistics in Society) 176(2), 459–479. Hsieh, C.-T. & Klenow, P. J. (2009), ‘Misallocation and manufacturing TFP in China and India’, The Quarterly Journal of Economics 124(4), 1403–1448. Ijiri, Y. & Simon, H. A. (1977), Skew distributions and the sizes of business firms, Vol. 24, North Holland, Amsterdam. Ilzetzki, E. & Simonelli, S. (2017), ‘Measuring productivity dispersion: Lessons from counting one-hundred million ballots’, CEPR Discussion Paper DP12273. Jäger, K. & The Conference Board (2018), EU KLEMS growth and productivity accounts 2017 release, statistical module 1, Technical report, EU KLEMS Project. Revised 2018, Available online http://www.euklems.net/TCB/2018/Metholology_EUKLEMS_2017_revised.pdf, http://www.euklems.net/TCB/2018/EUKLEMS_2018_revision.pdf. Kalemli-Ozcan, S., Sorensen, B., Villegas-Sanchez, C., Volosovych, V. & Yesiltas, S. (2015), ‘How to construct nationally representative firm level data from the orbis global database’, NBER Working Paper 21558. Kelejian, H. & Piras, G. (2017), Spatial Econometrics, Academic Press. König, M. D., Lorenz, J. & Zilibotti, F. (2016), ‘Innovation vs. imitation and the evolution of productivity distributions’, Theoretical Economics 11(3), 1053–1102. Lucas, R. E. & Moll, B. (2014), ‘Knowledge growth and the allocation of time’, Journal of Political Economy 122(1), 1–51. Mandelbrot, B. (1960), ‘The Pareto-Lévy law and the distribution of income’, International Economic Review 1(2), 79–106. Mandelbrot, B. (1963), ‘New methods in statistical economics’, Journal of Political Economy 71(5), 421–440. McCulloch, J. H. (1986), ‘Simple consistent estimators of stable distribution parameters’, Communications in Statistics-Simulation and Computation 15(4), 1109–1136. Mitchell, W. C. (1915), ‘The making and using of index numbers’, US BLS Bulletin 284. Reprinted 1938, accessible at https://fraser.stlouisfed.org/files/docs/publications/bls/bls_0656_1938.pdf. Mitzenmacher, M. (2004), ‘A brief history of generative models for power law and lognormal distributions’, Internet Mathematics 1(2), 226–251. Mizuno, T., Ishikawa, A., Fujimoto, S. & Watanabe, T. (2012), ‘Power laws in firm productivity’, Progress of Theoretical Physics Supplement 194, 122–134. Moran, J., Secchi, A. & Bouchaud, J.-P. (2020), Statistical facts on growth rates, in J. Moran, ed., ‘Statistical physics and anomalous macroeconomic fluctuations, PhD Thesis’, EHESS press. Newman, M. E. (2005), ‘Power laws, Pareto distributions and Zipf’s law’, Contemporary Physics 46(5), 323–351. Nolan, J. P. (1998), ‘Parameterizations and modes of stable distributions’, Statistics & Probability Letters 38(2), 187 – 195. Nolan, J. P. (2020), Stable Distributions - Models for Heavy Tailed Data, Springer. Office for National Statistics (2022), ‘Firm-level labour productivity estimates from the annual business survey (abs): summary statistics’, available online at https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/datasets/firmlevellabourproductivityestimatesfromtheannualbusinesssurveyabssummarystatistics. Oliveira-Cunha, J., Kozler, J., Shah, P., Thwaites, G. & Valero, A. (2021), Business time: How ready are uk firms for the decisive decade?, Technical report, The Resolution Foundation. Oulton, N. (2000), ‘A tale of two cycles: Closure, downsizing and productivity growth in uk manufacturing, i973-89’, National Institute Economic Review 173, 66–79. Perla, J. & Tonetti, C. (2014), ‘Equilibrium imitation and growth’, Journal of Political Economy 122(1), 52–76. Resnick, S. I. (2007), Heavy-Tail Phenomena: Probabilistic and Statistical Modeling, Springer Series in Operations Research and Financial Engineering, Springer. Rotemberg, M. & White, T. K. (2021), ‘Plant-to-table (s and figures): Processed manufacturing data and measured misallocation’, Working Paper . https://wp.nyu.edu/mrotemberg/wp-content/uploads/sites/8049/2021/07/RW_plant_to_table_July_2021.pdf. Samuelson, P. A. (1967), ‘Efficient portfolio selection for Pareto-Lévy investments’, Journal of Financial and Quantitative Analysis 2(2), 107–122. Schwarzkopf, Y., Axtell, R. & Farmer, J. D. (2010), ‘An explanation of universality in growth fluctuations’, SSRN 1597504. Shintani, M. & Umeno, K. (2018), ‘Super generalized central limit theorem—limit distributions for sums of nonidentical random variables with power laws—’, Journal of the Physical Society of Japan 87(4), 043003. Sornette, D. (2006), Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools, Springer Science & Business Media. Souma, W., Ikeda, Y., Iyetomi, H. & Fujiwara, Y. (2009a), ‘Distribution of labour productivity in japan over the period 1996–2006’, Economics: E-journal 3(1). Souma, W., Ikeda, Y., Iyetomi, H. & Fujiwara, Y. (2009b), ‘Distribution of labour productivity in japan over the period 1996-2006’, Economics: The Open-Access, Open-Assessment E-Journal 3. Syverson, C. (2011), ‘What determines productivity?’, Journal of Economic Literature 49(2), 326–65. Trapani, L. (2016), ‘Testing for (in)finite moments’, Journal of Econometrics 191(1), 57 – 68. Voitalov, I., van der Hoorn, P., van der Hofstad, R. & Krioukov, D. (2019), ‘Scale-free networks well done’, Physical Review Research 1(3), 033034. White, H. (2000), Asymptotic theory for econometricians, revised edition, Academic press. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112827 |
Available Versions of this Item
-
Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution. (deposited 18 Oct 2019 07:19)
- Measuring productivity dispersion: a parametric approach using the Lévy alpha-stable distribution. (deposited 28 Apr 2022 11:36) [Currently Displayed]