Schöttker, Oliver and Hütt, Christoph and Jauker, Frank and Witt, Johanna and Bareth, Georg and Wätzold, Frank (2022): Monitoring costs of result-based payments for biodiversity conservation: Will UAV-based remote sensing be the game-changer?
Preview |
PDF
MPRA_paper_112942.pdf Download (1MB) | Preview |
Abstract
Paying landowners for conservation results rather than paying for the measures intended to provide such results is a promising approach for biodiversity conservation. However, a key roadblock for the widespread implementation of such result-based payment schemes are the frequent difficulties to monitor target species for whose presence a landowner is supposed to receive a remuneration. Until recently, the only conceivable monitoring approach would be conventional monitoring techniques, by which qualified experts investigate the presence of target species on-site. With the rise of remote sensing technologies, in particular increased capabilities and decreased costs of unmanned aerial vehicles (UAVs), technological monitoring opportunities enter the scene. We analyse the costs of monitoring an ecological target of a hypothetical result-based payments scheme and compare the monitoring cost between conventional monitoring and UAV-assisted monitoring. We identify the underlying cost structure and cost components of both monitoring approaches and use a scenario analysis to identify the influence of factors like UAV and analysis costs, area size, and monitoring frequency. We find that although conventional monitoring is the least-cost monitoring approach today, future cost developments are likely to render UAV-assisted monitoring more cost-effective.
Item Type: | MPRA Paper |
---|---|
Original Title: | Monitoring costs of result-based payments for biodiversity conservation: Will UAV-based remote sensing be the game-changer? |
Language: | English |
Keywords: | biodiversity conservation; flowering resources; grassland; monitoring; costs; precision farming; remote sensing; result-based payments |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation ; Agriculture and Environment Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics ; Industrial Ecology |
Item ID: | 112942 |
Depositing User: | Oliver Schöttker |
Date Deposited: | 04 May 2022 07:39 |
Last Modified: | 04 May 2022 07:39 |
References: | Alotaibi, E. T., Alqefari, S. S., Koubaa, A. (2019). Lsar: Multi-UAV collaboration for search and rescue missions. IEEE Access, 7, 55817-55832. doi: 10.1109/ACCESS.2019.2912306 Batáry, P., Dicks, L. V., Kleijn, D., Sutherland, W.J. (2015). The role of agri‐environment schemes in conservation and environmental management. Conservation Biology, 29, 1006–1016. https://doi.org/10.1111/cobi.12536 Bagaram, M. B., Giuliarelli, D., Chirici, G., Giannetti, F., Barbati, A. (2018). UAV remote sensing for biodiversity monitoring: are forest canopy gaps good covariates?. Remote Sensing, 10(9), 1397. Doi: 10.3390/rs10020338 Banerjee, B.P., Raval, S., Cullen, P.J. (2020). UAV-hyperspectral imaging of spectrally complex environments. International Journal of Remote Sensing 41, 4136–4159. https://doi.org/10.1080/01431161.2020.1714771 Bartkowski, B., Droste, N., Ließ, M., Sidemo-Holm, W., Weller, U., Brady, M. V. (2021). Payments by modelled results: A novel design for agri-environmental schemes. Land Use Policy, 102, 105230. https://doi.org/10.1016/j.landusepol.2020.105230 Basavegowda, D. H., Mosebach, P., Schleip, I., Weltzien, C. (2022). Indicator plant species detection in grassland using EfficientDet object detector. In: Gandorfer, M., Hoffmann, C., El Benni, N., Cockburn, M., Anken, T. & Floto, H. (Edts.), 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft. Bonn: Gesellschaft für Informatik e.V.. (p. 57-62). Bendig, J., Bolten, A., Bareth, G. (2013). UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth Variability. Photogrammetrie-Fernerkundung-Geoinformation, 551-562. Berendse, F., Chamberlain, D., Kleijn, D., Schekkerman, H. (2004). Declining Biodiversity in Agricultural Landscapes and the Effectiveness of Agri-environment Schemes. AMBIO: A Journal of the Human Environment, 33(8), 499–502. https://doi.org/10.1579/0044-7447-33.8.499 Boardman, A.E., Greenberg, D.H., Vining, A.R., Weimer, D.L. (2017). Cost-benefit analysis: concepts and practice, 4. ed. Cambridge University Press. Borra‐Serrano, I., De Swaef, T., Muylle, H., Nuyttens, D., Vangeyte, J., Mertens, K., Saeys, W., Somers, B., Roldán‐Ruiz, I., Lootens, P. (2019). Canopy height measurements and non‐destructive biomass estimation of Lolium perenne swards using UAV imagery. Grass and Forage Science. gfs.12439. https://doi.org/10.1111/gfs.12439 Burton, R.J.F., Schwarz, G. (2013). Result-oriented agri-environmental schemes in Europe and their potential for promoting behavioural change. Land Use Policy, 30, 628–641. https://doi.org/10.1016/j.landusepol.2012.05.002 Candiago, S., Remondino, F., De Giglio, M., Dubbini, M., Gattelli, M. (2015). Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sensing, 7(4), 4026-4047. https://doi.org/10.3390/rs70404026 Carrio, A., Sampedro, C., Rodriguez-Ramos, A., Campoy, P. (2017). A review of deep learning methods and applications for unmanned aerial vehicles. Journal of Sensors, 2017. https://doi.org/10.1155/2017/3296874 Chaplin, S.P., Mills, J., Chiswell, H. (2021). Developing payment-by-results approaches for agri-environment schemes: Experience from an arable trial in England. Land Use Policy, 109, 105698. https://doi.org/10.1016/j.landusepol.2021.105698 Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., He, Y. (2019). Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sensing, 11(13), 1584. https://doi.org/10.3390/rs11131584 Christin, S., Hervet, É., Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution, 10, 1632–1644. https://doi.org/10.1111/2041-210X.13256 Colomina, I., Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013 Davidson, K.E., Fowler, M.S., Skov, M.W., Forman, D., Alison, J., Botham, M., Beaumont, N., Griffin, J.N. (2020). Grazing reduces bee abundance and diversity in saltmarshes by suppressing flowering of key plant species. Agriculture, Ecosystems & Environment, 291: 106760, https://doi.org/10.1016/j.agee.2019.106760. Dias, P. A., Tabb, A., Medeiros, H. (2018). Apple flower detection using deep convolutional networks. Computers in Industry, 99, 17-28. https://doi.org/10.1016/j.compind.2018.03.010 de Sainte Marie, C. (2014). Rethinking agri-environmental schemes. A result-oriented approach to the management of species-rich grasslands in France. Journal of Environmental Planning and Management, 57, 704–719. https://doi.org/10.1080/09640568.2013.763772 Drechsler, M. (2017). Performance of input-and output-based payments for the conservation of mobile species. Ecological Economics, 134, 49-56. Ebeling, A., Klein, A.‐M., Schumacher, J., Weisser, W.W. and Tscharntke, T. (2008). How does plant richness affect pollinator richness and temporal stability of flower visits?. Oikos, 117: 1808-1815. doi:10.1111/j.1600-0706.2008.16819.x Engel, S. (2015): Payments for environmental services. In: Essential Concepts of Global Environmental Governance, J. F. Morin and A. Orsini (eds.). Routledge. Finger, R., Swinton, S. M., El Benni, N., Walter, A. (2019). Precision farming at the nexus of agricultural production and the environment. Annual Review of Resource Economics, 11, 313-335. Gibbons, J.M., Nicholson, E., Milner-Gulland, E.J., Jones, J.P.G. (2011). Should payments for biodiversity conservation be based on action or results? Journal of Applied Ecology, 48, 1218–1226. https://doi.org/10.1111/j.1365-2664.2011.02022.x Gonzalez, L., Montes, G., Puig, E., Johnson, S., Mengersen, K., Gaston, K. (2016). Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors 16, 97. https://doi.org/10.3390/s16010097 Hasund, K.P. (2013). Indicator-based agri-environmental payments: A payment-by-result model for public goods with a Swedish application. Land Use Policy, 30, 223–233. https://doi.org/10.1016/j.landusepol.2012.03.011 Hegland, S.J. and Boeke, L. (2006). Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecological Entomology, 31: 532-538. doi:10.1111/j.1365-2311.2006.00812.x Herzon, I., Birge, T., Allen, B., Povellato, A., Vanni, F., Hart, K., Radley, G., Tucker, G., Keenleyside, C., Oppermann, R., Underwood, E., Poux, X., Beaufoy, G., Pražan, J. (2018). Time to look for evidence: Results-based approach to biodiversity conservation on farmland in Europe. Land Use Policy, 71, 347–354. https://doi.org/10.1016/j.landusepol.2017.12.011 Hütt, C., Bolten, A., Hohlmann, B., Komainda, M., Lussem, U., Isselstein, J., Bareth, G. (2021). First results of applying UAV laser scanning to a cattle grazing experiment. Sensing–New Insights into Grassland Science and Practice, 135. Jiang, S., Jiang, C., and Jiang, W. (2020). Efficient structure from motion for large-scale UAV images: A review and a comparison of SfM tools. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 230-251. https://doi.org/10.1016/j.isprsjprs.2020.04.016 Ju, C., Son, H. I. (2018). Multiple UAV systems for agricultural applications: Control, implementation, and evaluation. Electronics, 7(9), 162. https://doi.org/10.3390/electronics7090162 Kaligarič, M., Čuš, J., Škornik, S., Ivajnšič, D. (2019). The failure of agri-environment measures to promote and conserve grassland biodiversity in Slovenia. Land Use Policy, 80, 127–134. https://doi.org/10.1016/j.landusepol.2018.10.013 Kearns, C.A., Inouye, D.W. (1993). Techniques for Pollination Biologists. University Press of Colorado, Niwot, Colorado. Kleijn, D., Baquero, R.A., Clough, Y., Díaz, M., De Esteban, J., Fernández, F., Gabriel, D., Herzog, F., Holzschuh, A., Jöhl, R., Knop, E., Kruess, A., Marshall, E.J.P., Steffan-Dewenter, I., Tscharntke, T., Verhulst, J., West, T.M., Yela, J.L. (2006). Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecology Letters, 9, 243–254. https://doi.org/10.1111/j.1461-0248.2005.00869.x Kleijn, D., Sutherland, W.J. (2003). How effective are European agri-environment schemes in conserving and promoting biodiversity? Journal of Applied Ecology, 40, 947–969. https://doi.org/10.1111/j.1365-2664.2003.00868.x Latif, M. A. (2018). An Agricultural Perspective on Flying Sensors: State of the Art, Challenges, and Future Directions, IEEE Geoscience and Remote Sensing Magazine, 6(4), 10-22. 10.1109/MGRS.2018.2865815 Librán-Embid, F., Klaus, F., Tscharntke, T., Grass, I. (2020). Unmanned aerial vehicles for biodiversity-friendly agricultural landscapes - A systematic review. Sci. Total Environ. 732, 139204. https://doi.org/10.1016/j.scitotenv.2020.139204 Maddikunta, P.K.R., Hakak, S., Alazab, M., Bhattacharya, S., Gadekallu, T.R., Khan, W.Z., Pham, Q.-V. (2021). Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sensors Journal 21. Markova-Nenova, N., Wätzold, F., Sturm, A. (2020). Distributional Impacts of Cost-effective Spatially Homogeneous and Regionalized Agri-Environment Payments. A case study of a Grassland Scheme in Saxony, Germany. MPRA Working Paper No. 104759. Matzdorf, B., Lorenz, J. (2010). How cost-effective are result-oriented agri-environmental measures?—An empirical analysis in Germany. Land Use Policy, 27, 535–544. https://doi.org/10.1016/j.landusepol.2009.07.011 Meyer, B., Jauker, F. and Steffan-Dewenter, I. (2009). Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic and Applied Ecology, 10: 178-186. doi: 10.1016/j.baae.2008.01.001 Niedersächsisches Ministerialblatt (2019). 69. Jahrgang, Nummer 19, Hannover. Oppermann, R., Briemle, G. (2002). Blumenwiesen in der landwirtschaftlichen Förderung. Erste Erfahrungen mit der ergebnisorientierten Förderung im baden-württembergischen Agrar-Umweltprogramm MEKA II. Naturschutz und Landschaftsplanung, 37 (2002), pp. 203-209 Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. https://doi.org/10.14358/PERS.81.4.281 Petrou, Z. I., Manakos, I., Stathaki, T. (2015). Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodiversity and Conservation, 24(10), 2333-2363. doi: 10.1007/s10531-015-0947-z Pietsch, M., Henning, M., Mader, D., Westfeld, P., Etterer, F. (2018). Using unmanned aerial vehicles (UAV) for monitoring biodiversity measures in periurban and agrarian landscapes. Journal of Digital Landscape Architecture, 3, 273-282. Doi: 10.14627/537642029 Reddy, C.S. (2021). Remote sensing of biodiversity: what to measure and monitor from space to species? Biodivers. Conserv. 30, 2617–2631. https://doi.org/10.1007/s10531-021-02216-5 Roulston, T.H. and Goodell, K. (2011). The Role of Resources and Risks in Regulating Wild Bee Populations. Annual Review of Entomology, 56: 293-312. doi: 10.1146/annurev-ento-120709-144802 Russi, D., Margue, H., Oppermann, R., Keenleyside, C. (2016). Result-based agri-environment measures: Market-based instruments, incentives or rewards? The case of Baden-Württemberg. Land Use Policy, 54, 69–77. https://doi.org/10.1016/j.landusepol.2016.01.012 Schöttker, O., Wätzold, F. (2018). Buy or lease land? Cost-effective conservation of an oligotrophic lake in a Natura 2000 area. Biodiversity and Conservation, 27, 1327–1345. doi: 10.1007/s10531-017-1496-4 Schroeder, L.A., Isselstein, J., Chaplin, S., Peel, S. (2013). Agri-environment schemes: Farmers’ acceptance and perception of potential ‘Payment by Results’ in grassland—A case study in England. Land Use Policy, 32, 134–144. https://doi.org/10.1016/j.landusepol.2012.10.009 Schwieder, M., Buddeberg, M., Kowalski, K., Pfoch, K., Bartsch, J., Bach, H., Pickert, J. Hostert, P. (2020). Estimating Grassland Parameters from Sentinel-2: A Model Comparison Study. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88, 379-390. https://doi.org/10.1007/s41064-020-00120-1 Shahmoradi, J., Talebi, E., Roghanchi, P., Hassanalian, M. (2020). A comprehensive review of applications of drone technology in the mining industry. Drones, 4(3), 34. doi:10.3390/drones4030034 Sligo, F.X., Massey, C. (2007). Risk, trust and knowledge networks in farmers’ learning. Journal of Rural Studies, 23, 170–182. https://doi.org/10.1016/j.jrurstud.2006.06.001 Sturm, A., Drechsler, M., Johst, K., Mewes, M., Wätzold, F. (2018). DSS-Ecopay–A decision support software for designing ecologically effective and cost-effective agri-environment schemes to conserve endangered grassland biodiversity. Agricultural Systems, 161, 113-116. Szigeti, V., Kőrösi, Á., Harnos, A., Nagy, J., Kis, J. (2016). Measuring floral resource availability for insect pollinators in temperate grasslands – a review. Ecological Entomology, 41: 231-240. https://doi.org/10.1111/een.12298 Tsouros, D. C., Bibi, S., Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349. https://doi.org/10.3390/info10110349 TV-L (2019). Tarifvertrag für den öffentlichen Dienst der Länder vom 12. Oktober 2006, in der Fassung des Änderungstarifvertrages Nr. 11vom 2. März 2019 Tylianakis, J.M., Laliberté, E., Nielsen, A., Bascompte, J. (2010). Conservation of species interaction networks. Biological Conservation, 143: 2270-2279. doi:10.1016/j.biocon.2009.12.004 Uthes, S., Matzdorf, B. (2013). Studies on Agri-environmental Measures: A Survey of the Literature. Environmental Management, 51, 251–266. https://doi.org/10.1007/s00267-012-9959-6 v. Haaren, C., Bathke, M. (2008). Integrated landscape planning and remuneration of agri-environmental services. Journal of Environmental Management, 89, 209–221. https://doi.org/10.1016/j.jenvman.2007.01.058 Valiente‐Banuet, A., Aizen, M.A., Alcántara, J.M., Arroyo, J., Cocucci, A., Galetti, M., García, M.B., García, D., Gómez, J.M., Jordano, P., Medel, R., Navarro, L., Obeso, J.R., Oviedo, R., Ramírez, N., Rey, P.J., Traveset, A., Verdú, M., Zamora, R. (2015). Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 29: 299-307. doi:10.1111/1365-2435.12356 Warzecha, D., Diekötter, T., Wolters, V., Jauker, F. (2018). Attractiveness of wildflower mixtures for wild bees and hoverflies depends on some key plant species. Journal of Insect Conservation and Diversity, 11:32-41. https://doi.org/10.1111/icad.12264 Wätzold, F., Drechsler, M. (2005). Spatially Uniform versus Spatially Heterogeneous Compensation Payments for Biodiversity-enhancing Land-use measures. Environmental and Resource Economics, 31, 73–93. Wätzold, F., Schwerdtner, K. (2005). Why be wasteful when preserving a valuable resource? A review article on the cost-effectiveness of European biodiversity conservation policy. Biological Conservation, 123, 327–338. https://doi.org/10.1016/j.biocon.2004.12.001 Whitcraft, A. K., Vermote, E. F., Becker-Reshef, I., Justice, C. O. (2015). Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sensing of Environment, 156, 438-447. https://doi.org/10.1016/j.rse.2014.10.009 Whitehead, K., Hugenholtz, C. H., Myshak, S., Brown, O., LeClair, A., Tamminga, A., Thomas E. Barchyn, Brian Moorman, Eaton, B. (2014). Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: scientific and commercial applications. Journal of Unmanned Vehicle Systems, 2(3), 86-102. https://doi.org/10.1139/juvs-2014-0007 Wilson, A.M., Barr, J., Zagorski, M. (2017). The feasibility of counting songbirds using unmanned aerial vehicles. Auk 134, 350–362. https://doi.org/10.1642/AUK-16-216.1 Xu, R., Li, C., Paterson, A. H., Jiang, Y., Sun, S., Robertson, J. S. (2018). Aerial images and convolutional neural network for cotton bloom detection. Frontiers in Plant Science, 8, 2235. doi: 10.3389/fpls.2017.02235 Zabel, A., Holm-Müller, K. (2008). Conservation Performance Payments for Carnivore Conservation in Sweden. Conservation Biology, 22, 247–251. https://doi.org/10.1111/j.1523-1739.2008.00898.x Zabel, A., Roe, B. (2009). Optimal design of pro-conservation incentives. Ecological Economics, 69, 126–134. doi: 10.1016/j.ecolecon.2009.08.001 Zhang, C., Atkinson, P. M., George, C., Wen, Z., Diazgranados, M., Gerard, F. (2020). Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 280-291. doi: 10.1016/j.isprsjprs.2020.09.025 Aiimpacts.org (2017). https://aiimpacts.org/recent-trend-in-the-cost-of-computing/, accessed 28.04.2017 Appdevelopermagazine.com (2018). https://appdevelopermagazine.com/why-the-cost-of-cloud-computing-is-dropping-dramatically/, accessed 28.04.2021 AWS (2019). On-Demand pricing for Amazon EC2. https://aws.amazon.com/de/ec2/pricing/on-demand/, accessed 16.03.2021 Der-schweighofer.de (2021). https://www.der-schweighofer.de/ DJI-Enterprise-Maintenance-Service---Wartungspaket-Basic---DJI-P4-RTK-a284988, accessed 31.12.2020 Destatis (2021a). Preise: Daten zur Energiepreisentwicklung – Lange Reihen von Januar 2005 bis Januar 2021. Artikelnr.: 5619001211014, accessed 26.02.2021 Destatis (2021b). Verdienste und Arbeitskosten – Reallohnindex und Nominallohnindex. 4. Vierteljahr 2020. https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Realloehne-Nettoverdienste/Publikationen/_publikationen-innen-reallohnindex.html, accessed 07.05.2021 DJI.com (2021). store.dji.com, accessed 16.03.2021 Droneii.com (2021). https://droneii.com/the-drone-market-in-2021-and-beyond-5-key-takeaways (accessed 14.02.2022) Müller, B. (2021). Data from „Potential einer Deep Learning Klassifikation eines hochaufgelösten UAV Orthofotos zur Ermittlung der Blütendichte einer heterogenen Kuhweide“, https://arcg.is/1v4G5L0, accessed 27.04.2022. Niedersächsisches Ministerium für Inneres und Sport (2021). https://www.mi.niedersachsen.de/startseite/themen/offentliches_dienstrecht_korruptionspravention/arbeitszeitrecht/arbeitszeit-in-der-niedersaechsischen-landesverwaltung-62735.html, accessed 28.04.2021 Niedersächsische Reisekostenverordnung (NRKVO), §5, Abs 3, Satz 1; 10. Jan. 2017; (Nds. GVBl. Nr. 1/2017 S. 2) - VORIS 20444 -; http://www.voris.niedersachssen.de/jportal/?quelle=jlink&query=RKV+ND+%C2%A7+5&psml=bsvorisprod.psml&max=true, accessed 28.04.2021 Statista (2021). https://de.statista.com/statistik/daten/studie/251313/umfrage/durchschnittliche-anzahl-von-arbeitsunfaehigkeitstagen-je-versicherten/, accessed 28.04.2021 Researchdive.com (2021). https://www.researchdive.com/8348/unmanned-aerial-vehicle-uav-drones-market, accessed 22.6.2021 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/112942 |