Logo
Munich Personal RePEc Archive

The Determinants of Internet User Skills in Europe

Leogrande, Angelo and Magaletti, Nicola and Cosoli, Gabriele and Giardinelli, Vito O. M. and Massaro, Alessandro (2022): The Determinants of Internet User Skills in Europe.

[thumbnail of MPRA_paper_113123.pdf]
Preview
PDF
MPRA_paper_113123.pdf

Download (4MB) | Preview

Abstract

The following article indicates the determinants of “Internet User Skills” among European countries based on the application of the database deriving from the DESI-Index. The data were analyzed using the following econometric models, namely: Panel Data with Fixed Effects, Panel Data with Random Effects, Pooled OLS, WLS, WLS corrected for heteroskedasticity. The Elbow method and the Silouette coefficient method were compared for the optimization of the number of clusters obtained by the k-Means algorithm. The result shows the presence of 5 clusters. A network analysis was carried out using the Euclidean distance with the result of identifying two network structures between some analyzed countries. subsequently a comparison was made between six different machine learning algorithms for the prediction of the future value of the variable of interest. The result shows that the best predictor algorithm is Gradient Boosted Tree Regression with an expected value of the predicted variable increasing by a value of 1.75%. Later a further comparison was made by comparing 6 algorithms with the increased data. The result shows that the best predictor is Simple Regression Tree. The interest variable is predicted to decrease by an amount equal to -6.099%. Statistical errors improve on average by 32.43% in the transition between the original data and the increased data.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.