Leogrande, Angelo and Costantiello, Alberto and Laureti, Lucio (2022): k-Means Clusterization and Machine Learning Prediction of European Most Cited Scientific Publications.
Preview |
PDF
MPRA_paper_114273.pdf Download (2MB) | Preview |
Abstract
In this article we investigate the determinants of the European “Most Cited Publications”. We use data from the European Innovation Scoreboard-EIS of the European Commission for the period 2010-2019. Data are analyzed with Panel Data with Fixed Effects, Panel Data with Random Effects, WLS, and Pooled OLS. Results show that the level of “Most Cited Publications” is positively associated, among others, to “Innovation Index” and “Enterprise Birth” and negatively associated, among others, to “Government Procurement of Advanced Technology Products” and “Human Resources”. Furthermore, we perform a cluster analysis with the k-Means algorithm either with the Silhouette Coefficient and the Elbow Method. We find that the Elbow Method shows better results than the Silhouette Coefficient with a number of clusters equal to 3. In adjunct we perform a network analysis with the Manhattan distance, and we find the presence of 4 complex and 2 simplified network structures. Finally, we present a confrontation among 10 machine learning algorithms to predict the level of “Most Cited Publication” either with Original Data-OD either with Augmented Data-AD. Results show that the best machine learning algorithm to predict the level of “Most Cited Publication” with Original Data-OD is SGD, while Linear Regression is the best machine learning algorithm for the prediction of “Most Cited Publications” with Augmented Data-AD.
Item Type: | MPRA Paper |
---|---|
Original Title: | k-Means Clusterization and Machine Learning Prediction of European Most Cited Scientific Publications |
English Title: | k-Means Clusterization and Machine Learning Prediction of European Most Cited Scientific Publications |
Language: | English |
Keywords: | Innovation, and Invention: Processes and Incentives; Management of Technological Innovation and R&D; Diffusion Processes; Open Innovation. |
Subjects: | O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O30 - General O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O31 - Innovation and Invention: Processes and Incentives O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O32 - Management of Technological Innovation and R&D O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes |
Item ID: | 114273 |
Depositing User: | Dr Angelo Leogrande |
Date Deposited: | 23 Aug 2022 08:40 |
Last Modified: | 23 Aug 2022 08:41 |
References: | [1] A. H. ALSHARIF, N. O. R. Z. M. D. Salleh e R. BAHARUN, «Research Trends of Neuromarketing: Bibliometric Analysis,» Journal of Theoretical and Applied Information Technology, vol. 98, n. 15, 2020. [2] M. Gaviria-Marin, J. M. Merigo e S. Popa, «Twenty years of the Journal of Knowledge Management: A bibliometric analysis,» Journal of Knowledge Management, 2018. [3] S. S. Patil, S. C. Sarode, G. S. Sarode, A. R. Gadbail, S. Gondivkar, U. R. Kontham e K. M. Alqahtani, «A bibliometric analysis of the 100 most cited articles on early childhood caries,» International Journal of Paediatric Dentistry, vol. 5, n. 30, 2020. [4] F. Yuan, J. Cai, B. Liu e X. Tang, «Bibliometric analysis of 100 top-cited articles in gastric disease,» BioMed research international, 2020. [5] P. Ahmad, P. Vincent Abbott, M. Khursheed A. e J. Ahmed Asif, « A bibliometric analysis of the top 50 most cited articles published in the Dental Traumatology,» Dental Traumatology, vol. 36, n. 2, pp. 89-99, 2020. [6] J. O. Hodonu-Wusu e G. N. Lazarus, «Major trends in LIS research: A bibliometric analysis,» Library Philosophy and Practice, n. 1, 2018. [7] S. Ram e F. Nisha, «Highly Cited Articles in" Coronavirus" Research: A Bibliometric Analysis,» DESIDOC Journal of Library & Information Technology, vol. 40, n. 4, 2020. [8] H. ElHawary, A. Salimi, N. Diab e L. Smith, «Bibliometric analysis of early COVID-19 research: the top 50 cited papers,» Infectious diseases: research and treatment, vol. 13, n. 1178633720962935, 2020. [9] M. Castillo-Vergara, A. Alvarez-Marin e D. Placencio-Hidalgo, «A bibliometric analysis of creativity in the field of business economics,» Journal of Business Research, vol. 85, pp. 1-9, 2018. [10] B. Yılmaz, M. E. Dinçol e T. Y. Yalçın, «A bibliometric analysis of the 103 top-cited articles in endodontics,» Acta Odontologica Scandinavica, vol. 77, n. 8, pp. 574-583, 2019. [11] L. Valenzuela-Fernandez, J. M. Merigó, J. D. Lichtenthal e C. Nicolas, «A bibliometric analysis of the first 25 years of the Journal of Business-to-Business Marketing,» Journal of Business-to-Business Marketing, vol. 26, n. 1, pp. 75-94, 2019. [12] Y. Q. T. Hassona, «A bibliometric analysis of the most cited articles about squamous cell carcinoma of the mouth, lips, and oropharynx,» Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, vol. 128, n. 1, pp. 25-32, 2019. [13] J. Sun e B. Z. Yuan, «Mapping of the world rice research: A bibliometric analysis of top papers during 2008–2018,» Annals of Library and Information Studies (ALIS), vol. 67, n. 1, pp. 55-66, 2020. [14] M. Gaviria-Marin, J. M. Merigó e H. Baier-Fuentes, «Knowledge management: A global examination based on bibliometric analysis,» Technological Forecasting and Social Change, vol. 140, pp. 194-220, 2019. [15] Y. Yu, Y. Li, Z. Zhang, Z. Gu, H. Zhong, Q. Zha e E. Chen, «A bibliometric analysis using VOSviewer of publications on COVID-19,» Annals of translational medicine, vol. 8, n. 13, 2020. [16] K. Ahmad, Z. J. Ming e M. Rafi, « Assessing the digital library research output: bibliometric analysis from 2002 to 2016,» The Electronic Library, 2018. [17] A. Costantiello, L. Laureti e A. Leogrande, «The SMEs Innovation in Europe,» SSRN, n. 3964059 , 2021. [18] A. Costantiello, A. Leogrande e L. Laureti, «The Corporate Innovation in Europe,» IAI Virtual Academic Conference , vol. 10, n. 130, 2021. [19] A. Leogrande, L. Laureti e A. Costantiello, «The Innovation Index in Europe,» SSRN , n. 4091597., 2022. [20] A. Leogrande, A. Massaro e A. M. Galiano, «The Attractiveness of European Research Systems,» American Journal of Humanities and Social Sciences Research (AJHSSR), vol. 4, n. 10, pp. 72-101, 2020. [21] A. Costantiello e A. Leogrande, «The innovation-employment nexus in Europe,» American Journal of Humanities and Social Sciences Research (AJHSSR), vol. 4, n. 11, pp. 166-187, 2021. [22] A. Leogrande, A. Costantiello e L. Laureti, «The Export of Medium and High-Tech Products Manufactured in Europe,» 2022. [23] A. Leogrande, A. Costantiello e L. Laureti, «The Exports of Knowledge Intensive Services. A Complex Metric Approach,» University Library of Munich, Germany, n. 113348, 2022. [24] A. Costantiello, L. Laureti e A. Leogrande, «The Determinants of Firm Investments in Research and Development,» International Virtual Academic Conference Education and Social Sciences Business and Economics, 2021. [25] A. Costantiello, L. Laureti, G. De Cristoforo e A. Leogrande, «The Innovation-Sales Growth Nexus in Europe,» SSRN , n. 3933407, 2021. [26] A. Leogrande, N. Magaletti, G. Cosoli e A. Massaro, «Broadband Price Index in Europe,» SSRN, n. 4036690, 2022. [27] A. Leogrande, N. Magaletti, G. Cosoli e A. Massaro, «Fixed Broadband Take-Up in Europe,» SSRN , n. 4034298, 2022. [28] A. Leogrande, A. Costantiello e L. Laureti, «The Broadband Penetration in Europe,» SSRN , n. 3953683, 2021. [29] L. Laureti, A. Costantiello, M. Matarrese e A. Leogrande, «The Employment in Innovative Enterprises in Europe,» SSRN, 2022. [30] A. Leogrande, A. Costantiello, L. Laureti e M. Matarrese, «International Scientific Co-Publications in Europe,» SSRN , n. 4117970, 2022. [31] A. Costantiello, L. Laureti e A. Leogrande, «Marketing and Organizational Innovations in Europe,» SSRN , n. 4186167, 2022. [32] A. Leogrande, A. Massaro e A. M. Galiano, «The Determinants of Innovation in European Countries in the period 2010-2019,» American Journal of Humanities and Social Sciences Research (AJHSSR), vol. 4, n. 8, pp. 91-126, 2020. [33] L. Laureti, A. Costantiello, M. Matarrese e A. Leogrande, «Foreign Doctorate Students in Europe,» SSRN , n. 4032975, 2022. [34] L. Laureti, A. Costantiello e A. Leogrande, «The Finance-Innovation Nexus in Europe,» IJISET-International Journal of Innovative Science, Engineering & Technology, vol. 7, n. 12, 2020. [35] A. Leogrande, A. Massaro e A. M. Galiano, «The impact of R&D investments on corporate performance in European Countries,» American Journal of Humanities and Social Sciences Research (AJHSSR), vol. 4, n. 7, pp. 186-201, 2020. [36] A. Leogrande, A. Costantiello, L. Laureti e D. Leogrande, «The Determinants of Design Applications in Europe,» University Library of Munich, Germany, n. 110836, 2021. [37] A. Costantiello, L. Laureti e A. Leogrande, «The Intellectual Assets in Europe,» SSRN , n. 3956755, 2021. [38] A. Leogrande, G. Birardi, A. Massaro e A. M. Galiano, «Italian Universities: Institutional Mandate and Communitarian Engagement,» European Journal of Educational Management, vol. 2, n. 2, pp. 85-110, 2019. [39] A. Costantiello, L. Laureti e A. Leogrande, «The Determinants of Lifelong Learning in Europe,» University Library of Munich, Germany, 2022. [40] A. Leogrande, A. Massaro e A. M. Galiano, «The Determinants of Human Resources in European Countries During the Period 2010-2019,» American Journal of Humanities and Social Sciences Research (AJHSSR), vol. 4, n. 9, pp. 145-171, 2020. [41] A. Leogrande e A. Costantiello, «Human Resources in Europe. Estimation, Clusterization, Machine Learning and Prediction,» American Journal of Humanities and Social Sciences Research (AJHSSR), 2021. [42] A. Massaro, N. Magaletti, G. Cosoli, A. Leogrande e F. Cannone, «Use of Machine Learning to Predict the Glycemic Status of Patients with Diabetes,» 2021. [43] A. Massaro, N. Magaletti, G. Cosoli, V. Giardinelli e A. Leogrande, «The Prediction of Diabetes,» SSRN , n. 4135264, 2022. [44] A. Massaro, N. Magaletti, V. Giardinelli, G. Cosoli, A. Leogrande e F. Cannone, «Original Data Vs High Performance Augmented Data for ANN Prediction of Glycemic Status in Diabetes Patients,» SSRN , n. 4082839, 2022. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/114273 |