Gutiérrez, Antonio (2022): Movilidad urbana y datos de alta frecuencia.
Preview |
PDF
MPRA_paper_114854.pdf Download (492kB) | Preview |
Abstract
Urban mobility patterns are changing as a response to new behaviours in cities. With more journeys, increased demand for motorised vehicles and longer distances to travel the need to study urban mobility is necessary to guide society towards a more sustainable horizon. Big Data and the digital footprint of people and vehicles have created a new source of appropriate information for urban mobility studies. Therefore, this article presents the different tools that offer high-frequency and spatial-temporal resolution data along with a review of the literature that uses these datasets in urban mobility research.
Item Type: | MPRA Paper |
---|---|
Original Title: | Movilidad urbana y datos de alta frecuencia |
English Title: | Urban mobility and high frequency data |
Language: | Spanish |
Keywords: | urban mobility; social network; big Data |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C80 - General R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R4 - Transportation Economics > R40 - General |
Item ID: | 114854 |
Depositing User: | Antonio Gutiérrez |
Date Deposited: | 03 Oct 2022 14:10 |
Last Modified: | 03 Oct 2022 14:10 |
References: | Alexander, L., Jiang, S., Murga, M., & González, M. C. (2015). Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation research part c: emerging technologies, 58, 240-250. Aparicio, D., Hernández Martín-Caro, M. S., García-Palomares, J. C., & Gutiérrez, J. (2022). Exploring the spatial patterns of visitor expenditure in cities using bank card transactions data. Current Issues in Tourism, 25(17), 2770-2788. https://doi.org/10.1080/13683500.2021.1991898 Apple Inc. (2020). “Apple Mobility Trends reports”. https://www.apple.com/covid19/mobility/ Artola, C., & Martínez-Galán, E. (2012). Tracking the future on the web: construction of leading indicators using internet searches. Banco de Espana Occasional Paper, (1203). Arias-Molinares, D., & Carlos García-Palomares, J. (2020). Shared mobility development as key for prompting mobility as a service (MaaS) in urban areas: The case of Madrid. Case Studies on Transport Policy, 8(3), 846-859. https://doi.org/10.1016/j.cstp.2020.05.017 Arias-Molinares, D., Julio, R., García-Palomares, J. C., & Gutiérrez, J. (2021). Exploring micromobility services: Characteristics of station-based bike-sharing users and their relationship with dockless services. Journal of Urban Mobility, 1(October 2020), 100010. https://doi.org/10.1016/j.urbmob.2021.100010 Arias-Molinares, D., Romanillos, G., García-Palomares, J. C., & Gutiérrez, J. (2021). Exploring the spatio-temporal dynamics of moped-style scooter sharing services in urban areas. Journal of Transport Geography, 96(February). https://doi.org/10.1016/j.jtrangeo.2021.103193 Askitas, N. (2015a). Calling the Greek Referendum on the nose with Google Trends. Available at SSRN 2633443. Askitas, N. (2015b). Predicting the Irish 'Gay Marriage' Referendum. Available at SSRN 2674243. Askitas, N. (2016). Trend-spotting in the housing market. Cityscape, 18(2), 165-178. Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting. Askitas, N., & Zimmermann, K. F. (2015). Health and well-being in the great recession. International Journal of Manpower. Baker, S. R., & Fradkin, A. (2017). The impact of unemployment insurance on job search: Evidence from Google search data. Review of Economics and Statistics, 99(5), 756-768. Belloc, I., Gimenez-Nadal, J. I., & Molina, J. A. (2022a). The effect of diesel tax rates on the daily commuting of US workers: An effective instrument to promote sustainable mobility? IZA DP No. 15416. Belloc, I., Gimenez-Nadal, J. I., & Molina, J. A. (2022b). The gasoline price and the commuting behavior: Towards sustainable modes of transport. GLO Discussion Paper Series 1130. Bontempi, M. E., Golinelli, R., & Squadrani, M. (2016). A new index of uncertainty based on internet searches: A friend or foe of other indicators? Caceres, N., Wideberg, J. P., & Benitez, F. G. (2007). Deriving origin–destination data from a mobile phone network. IET Intelligent Transport Systems, 1(1), 15-26. Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira Jr, J., & Ratti, C. (2013). Understanding individual mobility patterns from urban sensing data: A mobile phone trace example. Transportation research part C: emerging technologies, 26, 301-313. Campos-Vazquez, R. M., & Esquivel, G. (2021). Consumption and geographic mobility in pandemic times. Evidence from Mexico. Review of Economics of the Household, 19(2), 353-371. Carpio-Pinedo, J., Romanillos, G., Aparicio, D., Martín-Caro, M. S. H., García-Palomares, J. C., & Gutiérrez, J. (2022). Towards a new urban geography of expenditure: Using bank card transactions data to analyze multi-sector spatiotemporal distributions. Cities, 131(November 2021). https://doi.org/10.1016/j.cities.2022.103894 Carrière‐Swallow, Y., & Labbé, F. (2013). Nowcasting with Google Trends in an emerging market. Journal of Forecasting, 32(4), 289-298. Carvalho, V. M., Garcia, J. R., Hansen, S., Ortiz, Á., Rodrigo, T., Rodríguez Mora, J. V., & Ruiz, P. (2021). Tracking the COVID-19 crisis with high-resolution transaction data. Royal Society Open Science, 8(8), 210218. Castelnuovo, E., & Tran, T. D. (2017). Google it up! a google trends-based uncertainty index for the united states and australia. Economics Letters, 161, 149-153. Cebrián, E., & Domenech, J. (2022). Is Google Trends a quality data source?. Applied Economics Letters, 1-5. Choi, H. and Varian, H. (2009a), ‘Predicting the Presentwith Google Trends’, Technical report, Google. Choi, H., & Varian, H. (2009b). Predicting initial claims for unemployment benefits. Google Inc, 1, 1-5. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic record, 88, 2-9. Condeço-Melhorado, A., Mohino, I., Moya-Gómez, B., & García-Palomares, J. C. (2020). The Rio olympic games: A look into city dynamics through the lens of Twitter data. Sustainability (Switzerland), 12(17), 1-16. https://doi.org/10.3390/su12177003 D’Amuri, F., & Marcucci, J. (2017). The predictive power of Google searches in forecasting US unemployment. International Journal of Forecasting, 33(4), 801-816. Della Penna, N., & Huang, H. (2010). Constructing consumer sentiment index for US using Google searches (No. 2009-26). Dujardin, S., Jacques, D., Steele, J., & Linard, C. (2020). Mobile phone data for urban climate change adaptation: Reviewing applications, opportunities and key challenges. Sustainability, 12(4), 1501. Echeverría, L., Gimenez-Nadal, J. I., & Molina, J. A. (2021). Carpooling: User profiles and well-being. IZA DP No. 14736. Echeverría, L., Gimenez-Nadal, J. I., & Molina, J. A. (2022a). Who uses green mobility? Exploring profiles in developed countries. Transportation research part A: policy and practice, 163, 247-265. Echeverría, L., Gimenez-Nadal, J. I., & Molina, J. A. (2022b). Green mobility and well-being. Ecological Economics, 195, 107368. Echeverría, L., Gimenez-Nadal, J. I., & Molina, J. A. (2022c). Active commuting and the health of workers. IZA DP No. 15572. Einav, L., & Levin, J. (2014). Economics in the age of big data. Science, 346(6210), 1243089. Fondeur, Y., & Karamé, F. (2013). Can Google data help predict French youth unemployment?. Economic Modelling, 30, 117-125. Gao, S., Yang, J. A., Yan, B., Hu, Y., Janowicz, K., & McKenzie, G. (2014, September). Detecting origin-destination mobility flows from geotagged tweets in greater Los Angeles area. In Proceedings of the eighth international conference on geographic information science (pp. 1-4). García-Albertos, P., Picornell, M., Salas-Olmedo, M. H., & Gutiérrez, J. (2019). Exploring the potential of mobile phone records and online route planners for dynamic accessibility analysis. Transportation Research Part A: Policy and Practice, 125(February 2018), 294-307. https://doi.org/10.1016/j.tra.2018.02.008 García-Palomares, J. C., Salas-Olmedo, M. H., Moya-Gómez, B., Condeço-Melhorado, A., & Gutiérrez, J. (2018). City dynamics through Twitter: Relationships between land use and spatiotemporal demographics. Cities, 72(September), 310-319. https://doi.org/10.1016/j.cities.2017.09.007 Giménez, J.I. and Molina, J.A. (2014). Commuting time and labour supply in the Netherlands: a time use study. Journal of Transport Economics and Policy, 48 (3), 409-426. Giménez, J.I. and Molina, J.A. (2016). Commuting time and household responsabilities: evidence using propensity score matching. Journal of Regional Science, 56, 332-359. https://doi.org/10.1111/jors.12243. Giménez-Nadal, J.I. and Molina, J.A. (2019a). Daily feelings of US workers and commuting time. Journal of Transport & Health, 12, 21-33. https://doi.org/10.1016/j.jth.2018.11.001. Giménez-Nadal, J.I. and Molina, J.A. (2019b). Green commuting and gasoline taxes in the United States. Energy Policy, 132, 324-331. https://doi.org/10. 1016/j.enpol.2019.05.048. Giménez, J.I. , Molina, J.A. and Velilla, J. (2018). The commuting behavior of workers in the United States: differences between the employed and the self-employed. Journal of Transport Geography, 66, 19-29. https://doi.org/10.1016/j.jtrangeo.2017.10.011. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2019c). Modeling commuting time in the US: Bootstrapping techniques to avoid overfitting. Papers in Regional Science, 98(4), 1667-1684. https://doi.org/10.1111/pirs.12424. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2020). Commuting and self-employment in Western Europe. Journal of Transport Geography, 88. 102856. https://doi.org/10.1016/j.trangeo.2020.102856. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2021). Two-way commuting: Asymmetries from time use surveys. Journal of Transport Geography, 95, 103146. https://doi.org/10.1016/j.trangeo.2021.103146. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2022a). Trends in commuting time of European workers: A cross-country analysis. Transport Policy, 116, 327-342. https://doi.org/10.1016/j.tran-pol.2021.12.016. Giménez-Nadal, J.I., Molina, J.A. and Velilla, J. (2022b). Commuting time and sickness absence of US workers. Empirica, forthcoming. https://doi.org/10.1007/s10663-022-09534-z. Giménez-Nadal, J.I., Gracia-Lázaro, C. and Molina, J.A. (2022c). Increasing the use of public bicycles: efficiency and demand. Economic Analysis and Policy, forthcoming. https://doi.org/10.1016/j.eap.2022.09.015. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. Google, 2016. Google Trends help – Trends graphs and forecasts, Retrieved from https://support.google.com/trends/answer/4355164?hl=en&reftopic=4365530 (20.05.16, 14:51). Google LLC. (2020). Google COVID-19 Community Mobility Reports. https://www.google.com/covid19/mobility/ Gschwender, A., Munizaga, M., & Simonetti, C. (2016). Using smart card and GPS data for policy and planning: The case of Transantiago. Research in Transportation Economics, 59, 242-249. https://doi.org/10.1016/j.retrec.2016.05.004 Gutiérrez, J., Benítez, C., Leaño, J., García-Palomares, J., Condeço-Melhorado, A., Mojica, C., Scholl, L., Adler, V., Vera, F., Moya-Gómez, B., & Romanillos, G. (2019). Cómo aplicar big data en la planificación del transporte urbano: El uso de datos de telefonía móvil en el análisis de la movilidad. https://doi.org/10.18235/0002009 Gutiérrez Puebla, J., Benítez, C., García Palomares, J. C., Romanillos Arroyo, G., Rubinstein, E., Leaño, J. M., Ribeiro, K. M., Scholl, L., Moya Gómez, B., & Condeço Melhorado, A. (2020). Cómo aplicar Big Data en la planificación del transporte: El uso de datos de GPS en el análisis de la movilidad urbana. 150. https://doi.org/10.18235/0002487 Hashemian, B., Massaro, E., Bojic, I., Murillo Arias, J., Sobolevsky, S., & Ratti, C. (2017). Socioeconomic characterization of regions through the lens of individual financial transactions. PloS one, 12(11), e0187031. Järv, O., Tenkanen, H., & Toivonen, T. (2017). Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation. International Journal of Geographical Information Science, 31(8), 1630-1651. Karr, A. F., Sanil, A. P., & Banks, D. L. (2006). Data quality: A statistical perspective. Statistical Methodology, 3(2), 137-173. Lee, J. H., Gao, S., & Goulias, K. G. (2015). Can Twitter data be used to validate travel demand models. In 14th international conference on travel behaviour research. Lenormand, M., Picornell, M., Cantú-Ros, O. G., Tugores, A., Louail, T., Herranz, R., ... & Ramasco, J. J. (2014). Cross-checking different sources of mobility information. PloS one, 9(8), e105184. Lenormand, M., Louail, T., Cantú-Ros, O. G., Picornell, M., Herranz, R., Arias, J. M., ... & Ramasco, J. J. (2015). Influence of sociodemographic characteristics on human mobility. Scientific reports, 5(1), 1-15. Lo, K. L., Liu, H., Yang, M., & Mi, J. J. (2021). The relationship between public attention and COVID-19: Evidence from the big data analysis of Google trends. Applied Economics Letters, 1-8. Martínez, E. A., Rubio, M. H., Martinez, R. M., Arias, J. M., Patane, D., Zerbe, A., ... & Luengo-Oroz, M. (2016). Measuring economic resilience to natural disasters with big economic transaction data. arXiv preprint arXiv:1609.09340. Mendolia, S., Stavrunova, O., & Yerokhin, O. (2021). Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information. Journal of Economic Behavior & Organization, 184, 199-231. Molina, J.A., Giménez-Nadal, J.I. and Velilla, J. (2020). Sustainable commuting: Results from asocial approach and international evidence on carpooling. Sustainability, 12(22), 9587. https://doi.org/10.3390/su12229587. Moya-Gómez, B., Salas-Olmedo, M. H., García-Palomares, J. C., & Gutiérrez, J. (2018). Dynamic Accessibility using Big Data: The Role of the Changing Conditions of Network Congestion and Destination Attractiveness. Networks and Spatial Economics, 18(2), 273-290. https://doi.org/10.1007/s11067-017-9348-z Osorio-Arjona, J., & García-Palomares, J. C. (2017). Nuevas fuentes y retos para el estudio de la movilidad urbana. Cuadernos Geográficos, 56(3), 247-267. https://doi.org/10.30827/CUADGEO.V56I3.5352 Osorio-Arjona, J., & García-Palomares, J. C. (2019a). Social media and urban mobility: Using twitter to calculate home-work travel matrices. Cities, 89(January), 268-280. https://doi.org/10.1016/j.cities.2019.03.006 Osorio-Arjona, J., & García-Palomares, J. C. (2019b). Big Data y universidades: análisis de movilidad de los estudiantes universitarios a partir de datos de Twitter. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (24), 37-57. Osorio-Arjona, J., Horak, J., Svoboda, R., & García-Ruíz, Y. (2021). Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space. Sustainable Cities and Society, 64(March 2020), 102530. https://doi.org/10.1016/j.scs.2020.102530 Otterbach, S., Oskorouchi, H. R., Rogan, M., & Qaim, M. (2021). Using Google data to measure the role of Big Food and fast food in South Africa’s obesity epidemic. World Development, 140, 105368. Owen, A. L., & Wei, A. (2021). Sexism, household decisions, and the gender wage gap. Labour Economics, 72, 102062. Romanillos, G., & Austwick, M. Z. (2015). Madrid cycle track : visualizing the cyclable city. 5647(October). https://doi.org/10.1080/17445647.2015.1088901 Romanillos, G., Austwick, M. Z., Ettema, D., Kruijf, J. De, Romanillos, G., Austwick, M. Z., Ettema, D., & Kruijf, J. De. (2015). Big Data and Cycling. 1647(October). https://doi.org/10.1080/01441647.2015.1084067 Romanillos, G., & Gutiérrez, J. (2020). Cyclists do better. Analyzing urban cycling operating speeds and accessibility. International Journal of Sustainable Transportation, 14(6), 448-464. https://doi.org/10.1080/15568318.2019.1575493 Romanillos, G., Moya-Gómez, B., Zaltz-Austwick, M., & Lamíquiz-Daudén, P. J. (2018). The pulse of the cycling city: visualising Madrid bike share system GPS routes and cycling flow. Journal of Maps, 14(1), 34-43. https://doi.org/10.1080/17445647.2018.1438932 Salas-Olmedo, M. H., & Rojas Quezada, C. (2017). The use of public spaces in a medium-sized city: From Twitter data to mobility patterns. Journal of Maps, 13(1), 40-45. https://doi.org/10.1080/17445647.2017.1305302 Suhoy, T. (2009). Query indices and a 2008 downturn: Israeli data (No. 2009.06). Bank of Israel. Steinmetz, S., Bianchi, A., Tijdens, K., & Biffignandi, S. (2014). Improving web survey quality. Online panel research: A data quality perspective, 273-298. Toole, J. L., Colak, S., Sturt, B., Alexander, L. P., Evsukoff, A., & González, M. C. (2015). The path most traveled: Travel demand estimation using big data resources. Transportation Research Part C: Emerging Technologies, 58, 162-177. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/114854 |