Liu, Min and Xu, Wenli and Zhang, Hangyu and Chen, Huang and Bie, Qiang and Han, Guodong and Yu, Xiaohua (2022): Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence.
Preview |
PDF
MPRA_paper_115704.pdf Download (7MB) | Preview |
Abstract
Serious climate challenges and environmental concerns have led to calls to mitigate greenhouse effects and pollution by controlling livestock production. In this study, we performed a cross-boundary quasi-natural experimental analysis of the Mongolian Plateau to examine the causal effects of livestock reduction on greenhouse gas (GHG) emissions and air pollutants. Aimed at grassland conservation by controlling overgrazing, China’s grassland ecological compensation policy (GECP) unintendedly offered the opportunity to estimate the causal effects of livestock reduction. To this end, we used official statistical data, remote sensing data, reanalysis data, and household survey data. Empirical findings based on the synthetic difference-in-differences (SDID) approach showed that with the implementation of the GECP, livestock reduction reduced atmospheric GHG and air pollutant concentrations and increased grassland quality and carbon sequestration in grasslands. We extended the basic SDID to the dynamic SDID and used it to estimate the causal effects in each policy year, which presented that the policy effects were more pronounced after several years of continuous implementation. The pathway analysis revealed that atmospheric CH4 concentrations decreased with the reduction in animal CH4 emissions and that the PM2.5 and PM10 concentrations decreased with grassland restoration. These findings provided empirical references for reforming the global food system to ensure both food security and environmental protection.
Item Type: | MPRA Paper |
---|---|
Original Title: | Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence |
Language: | English |
Keywords: | Greenhouse gases Air pollutants Livestock Synthetic difference-in-differences Grassland |
Subjects: | H - Public Economics > H4 - Publicly Provided Goods > H43 - Project Evaluation ; Social Discount Rate Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics |
Item ID: | 115704 |
Depositing User: | Wenli Xu |
Date Deposited: | 19 Dec 2022 15:30 |
Last Modified: | 19 Dec 2022 15:30 |
References: | Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59(2), 391–425. Abadie, A., Diamond, A., Hainmueller, J., (2010). Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. Journal of the American Statistical Association, 105 (490), 493–505. Abadie, A., Diamond, A., Hainmueller, J., (2015). Comparative politics and the synthetic control method. American Journal of Political Science, 59 (2), 495–510. Abadie, A., Gardeazabal, J., (2003). The economic costs of conflict: A case study of the basque country. American Economic Review, 93 (1), 113–132. Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic difference–in–differences. American Economic Review, 111(12), 4088–4118. Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic perspectives, 31(2), 3–32. Bai, Z., Fan, X., Jin, X., Zhao, Z., Wu, Y., Oenema, O., ... & Ma, L. (2022). Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nature Food, 3(2), 152–160. Beck, T., Levine, R., & Levkov, A. (2010). Big bad banks? The winners and losers from bank deregulation in the United States. The Journal of Finance, 65(5), 1637–1667 Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P., & Smith, P. (2013). Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology, 19(1), 3–18. Bodirsky, B. L., Popp, A., Lotze–Campen, H., Dietrich, J. P., Rolinski, S., Weindl, I., ... & Stevanovic, M. (2014). Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature communications, 5(1), 1–7. Bunte, J. B., Desai, H., Gbala, K., Parks, B., & Runfola, D. M. (2018). Natural resource sector FDI, government policy, and economic growth: Quasi–experimental evidence from Liberia. World development, 107, 151–162. Callaway, B. & Sant'Anna, P.H.C. (2022). Pre–Testing in a DiD Setup using the did Package. https://bcallaway11.github.io/did/articles/pre–testing.html. Campos, N. F., Coricelli, F., & Franceschi, E. (2022). Institutional integration and productivity growth: Evidence from the 1995 enlargement of the European Union. European Economic Review, 142, 104014. Cerulli, G. (2015). ctreatreg: Command for fitting dose–response models under exogenous and endogenous treatment. The Stata Journal, 15(4), 1019–1045. Chen, L., Liu, C., Zou, R., Yang, M., & Zhang, Z. (2016). Experimental examination of effectiveness of vegetation as bio–filter of particulate matters in the urban environment. Environmental Pollution, 208, 198–208. Clark, M. A., Domingo, N. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., ... & Hill, J. D. (2020). Global food system emissions could preclude achieving the 1.5 and 2 C climate change targets. Science, 370(6517), 705–708. Clarke, D., & Tapia–Schythe, K. (2021). Implementing the panel event study. The Stata Journal, 21(4), 853–884. Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., ... & McLinden, C. A. (2022). Global fine–scale changes in ambient NO2 during COVID–19 lockdowns. Nature, 601(7893), 380–387. Crippa, M., Solazzo, E., Guizzardi, D., Monforti–Ferrario, F., Tubiello, F. N., & Leip, A. J. N. F. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. Cunningham, S. (2021). Causal inference. In Causal Inference. Yale University Press. De Chaisemartin, C., & d'Haultfoeuille, X. (2020). Two–way fixed effects estimators with heterogeneous treatment effects. American Economic Review, 110(9), 2964–96. Deryugina, T., Heutel, G., Miller, N. H., Molitor, D., & Reif, J. (2019). The mortality and medical costs of air pollution: Evidence from changes in wind direction. American Economic Review, 109(12), 4178–4219. Dong, G., Zhao, F., Chen, J., Zhang, Y., Qu, L., Jiang, S., ... & Shao, C. (2020). Non–climatic component provoked substantial spatiotemporal changes of carbon and water use efficiency on the Mongolian Plateau. Environmental Research Letters, 15(9), 095009. https://iopscience.iop.org/article/10.1088/1748–9326/ab9692/pdf FAOUN (Food and Agriculture Organization of the United Nations). (2009). The State of Food and Agriculture: Livestock in the Balance. FAOUN (Food and Agriculture Organization of the United Nations). (2010). Global Livestock Environmental Assessment Model (GLEAM). https://www.fao.org/gleam/results/en/ Feng, X., Fu, B., Lu, N., Zeng, Y., & Wu, B. (2013). How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China's Loess Plateau. Scientific Reports, 3(1), 1–5. Freyaldenhoven, S., Hansen, C., Pérez, J. P., & Shapiro, J. M. (2021). Visualization, identification, and estimation in the linear panel event–study design (No. w29170). National Bureau of Economic Research. Freyaldenhoven, S., Hansen, C., & Shapiro, J. M. (2019). Pre–event trends in the panel event–study design. American Economic Review, 109(9), 3307–38. Fu, H., Zhang, Y., Liao, C., Mao, L., Wang, Z., & Hong, N. (2020). Investigating PM2. 5 responses to other air pollutants and meteorological factors across multiple temporal scales. Scientific Reports, 10(1), 1–10. Gavrilova, O., Leip, A., Dong, H., MacDonald, J. D., Gomez Bravo, C. A., Amon, B., ...Widiawati, Y. (2019). Emissions from livestock and manure management. https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1119362/1/Limaemissionslivestock2019.pdf Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., ... & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO). Goodland, R. (2013). Lifting livestock's long shadow. Nature Climate Change, 3(1), 2–2. Goodman–Bacon, A. (2021). Difference–in–differences with variation in treatment timing. Journal of Econometrics, 225(2), 254–277. Gregorini, P., Gordon, I. J., Kerven, C., & Provenza, F. (Eds.). (2022). Grazing in Future Multi-Scapes: From Thoughtscapes to Landscapes, Creating Health from the Ground Up. Frontiers Media SA. Gu, B., Zhang, L., Van Dingenen, R., Vieno, M., Van Grinsven, H. J., Zhang, X., ... & Sutton, M. A. (2021). Abating ammonia is more cost–effective than nitrogen oxides for mitigating PM2. 5 air pollution. Science, 374(6568), 758–762. Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., ... & Stehfest, E. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6(5), 452–461. Hou, L., Xia, F., Chen, Q., Huang, J., He, Y., Rose, N., & Rozelle, S. (2021). Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nature Communications, 12(1), 1–12. Houzer, E., & Scoones, I. (2021). Are livestock always bad for the planet? Rethinking the protein transition and climate change debate. https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/16839/Climate–livestock_full_report_(EN)_web.pdf?sequence=5 Inness, A., Ades, M., Agustí–Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M., ... & Suttie, M. (2019). The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, 19(6), 3515–3556. IPCC (Intergovernmental Panel on Climate Change). (2021).2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Access from: https://www.ipcc–nggip.iges.or.jp/public/2019rf/vol4.html Jia, P., Tu, Y., Liu, Z., Lai, Q., Li, F., Dong, L., & Diao, Q. (2022). Characterization and mitigation option of greenhouse gas emissions from lactating Holstein dairy cows in East China. Journal of animal science and biotechnology, 13(1), 1–14. Jin, S., Zhang, B., Wu, B., Han, D., Hu, Y., Ren, C., ... & Chen, J. (2021). Decoupling livestock and crop production at the household level in China. Nature Sustainability, 4(1), 48–55. Kahn–Lang, A., & Lang, K. (2020). The promise and pitfalls of differences–in–differences: Reflections on 16 and pregnant and other applications. Journal of Business & Economic Statistics, 38(3), 613–620. Keola, S., Andersson, M., & Hall, O. (2015). Monitoring economic development from space: using nighttime light and land cover data to measure economic growth. World Development, 66, 322–334. Keppler, F., Hamilton, J. T., Braß, M., & Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions. Nature, 439(7073), 187–191. Kingston–Smith, A. H., Edwards, J. E., Huws, S. A., Kim, E. J., & Abberton, M. (2010). Plant–based strategies towards minimising ‘livestock's long shadow’. Proceedings of the Nutrition Society, 69(4), 613–620. Krasnov, H., Katra, I., & Friger, M. (2016). Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015. Environmental Pollution, 213, 36–42. Kranz. (2022). Synthetic Difference–in–Differences with Time–Varying Covariates. Working paper. Lelieveld, J., & Crutzen, P. J. (1992). Indirect chemical effects of methane on climate warming. Nature, 355(6358), 339–342. Liang, W., Yang, Y., Fan, D., Guan, H., Zhang, T., Long, D., ... & Bai, D. (2015). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204, 22–36. Lieth, H., & Whittaker, R. H. (Eds.). (2012). Primary productivity of the biosphere (Vol. 14). Springer Science & Business Media. Liu, L., Xu, W., Lu, X., Zhong, B., Guo, Y., Lu, X., ... & Vitousek, P. (2022). Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences, 119(14), e2121998119. Liu, M., Dries, L., Heijman, W., Huang, J., Zhu, X., Hu, Y., & Chen, H. (2018). The impact of ecological construction programs on grassland conservation in Inner Mongolia, China. Land Degradation & Development, 29(2), 326–336. Liu, M., Dries, L., Heijman, W., Zhu, X., Deng, X., & Huang, J. (2019a). Land tenure reform and grassland degradation in Inner Mongolia, China. China Economic Review, 55, 181–198. Liu, M., Dries, L., Huang, J., Min, S., & Tang, J. (2019b). The impacts of the eco–environmental policy on grassland degradation and livestock production in Inner Mongolia, China: An empirical analysis based on the simultaneous equation model. Land Use Policy, 88, 104167. Liu, X., Tai, A. P., Chen, Y., Zhang, L., Shaddick, G., Yan, X., & Lam, H. M. (2021). Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nature Food, 2(12), 997–1004. Liu, Y., Liu, S., Sun, Y., Li, M., An, Y., & Shi, F. (2021). Spatial differentiation of the NPP and NDVI and its influencing factors vary with grassland type on the Qinghai–Tibet Plateau. Environmental Monitoring and Assessment, 193(1), 1–21. Luo, J., Du, P., Samat, A., Xia, J., Che, M., & Xue, Z. (2017). Spatiotemporal pattern of PM2. 5 concentrations in mainland China and analysis of its influencing factors using geographically weighted regression. Scientific Reports, 7(1), 1–14. Maestre, F. T., Le Bagousse–Pinguet, Y., Delgado–Baquerizo, M., Eldridge, D. J., Saiz, H., Berdugo, M., ... & Gross, N. (2022). Grazing and ecosystem service delivery in global drylands. Science, 378(6622), 915–920. MEEPRC (Ministry of Ecology and Environment of the People’s Republic of China). (2022). Annual Report on Ecological Environment Statistics of China. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202202/t20220218_969391.shtml Mei, W.M., Liu, M., & Dong, L. F. (2022). Emission factors of livestock under different scenarios. Working paper. NBSC (National Bureau of Statistics of China). (2021). China Statistical Yearbook 2021. http://www.stats.gov.cn/tjsj/ndsj/2021/indexeh.htm NFGA (National Forestry and Grassland Administration). (2021). Notification on Implementing the Third Round of Grassland Ecological Compensation Policy and Imposing Grazing Bans and Livestock–Forage Balance. http://www.forestry.gov.cn/main/58/20211229/103855245203439.html [In Chinese] Pérez–Domínguez, I., Del Prado, A., Mittenzwei, K., Hristov, J., Frank, S., Tabeau, A., ... & Sanz–Sánchez, M. J. (2021). Short–and long–term warming effects of methane may affect the cost–effectiveness of mitigation policies and benefits of low–meat diets. Nature Food, 2(12), 970–980. Piao, S. L., Fang, J. Y., He, J. S., & Xiao, Y. (2004). Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 28(4), 491. Prather, M. J., & Hsu, J. (2010). Coupling of nitrous oxide and methane by global atmospheric chemistry. Science, 330(6006), 952–954. PRC (People’s Republic of China). (2018). The People’s Republic of China Second Biennial Update Report on Climate Change. http://big5.mee.gov.cn/gate/big5/www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf [In Chinese] PRC (People’s Republic of China). (2021). Bulletin of the Third National Land Survey Data. http://www.gov.cn/xinwen/2021–08/26/content_5633490.htm [In Chinese] Roth, J. (2022). Pretest with caution: Event–study estimates after testing for parallel trends. American Economic Review: Insights, 4(3), 305–22. Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., Rosales, M., Rosales, M., & de Haan, C. (2006). Livestock's long shadow: environmental issues and options. Food & Agriculture Organization. Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. Journal of Econometrics, 225(2), 175–199. Tollefson, J. (2022). Scientists raise alarm over 'dangerously fast' growth in atmospheric methane. Nature. Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W. D., ... & Fensholt, R. (2018). Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1(1), 44–50. Van Selm, B., Frehner, A., De Boer, I. J., Van Hal, O., Hijbeek, R., Van Ittersum, M. K., ... & Van Zanten, H. H. (2022). Circularity in animal production requires a change in the EAT– Lancet diet in Europe. Nature Food, 3(1), 66–73. Wang, J., Brown, D. G., & Agrawal, A. (2013). Climate adaptation, local institutions, and rural livelihoods: A comparative study of herder communities in Mongolia and Inner Mongolia, China. Global environmental change, 23(6), 1673–1683. Westhoek, H., Lesschen, J. P., Rood, T., Wagner, S., De Marco, A., Murphy–Bokern, D., ... & Oenema, O. (2014). Food choices, health and environment: Effects of cutting Europe's meat and dairy intake. Global Environmental Change, 26, 196–205. Wirsenius, S., Hedenus, F., & Mohlin, K. (2011). Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects. Climatic Change, 108(1), 159–184. Wu, R., & Tiessen, H. (2002). Effect of land use on soil degradation in alpine grassland soil, China. Soil Science Society of America Journal, 66(5), 1648–1655. Wuepper, D., Borrelli, P. & Finger, R. (2020a). Countries and the global rate of soil erosion. Nature Sustainability 3, 51–55. Wuepper, D., Le Clech, S., Zilberman, D., Mueller, N. & Finger, R. (2020b). Countries influence the trade–off between crop yields and nitrogen pollution. Nature Food 1, 713–719. Xu, C., Li, Y., Hu, J., Yang, X., Sheng, S., & Liu, M. (2012). Evaluating the difference between the normalized difference vegetation index and net primary productivity as the indicators of vegetation vigor assessment at landscape scale. Environmental Monitoring and Assessment, 184(3), 1275–1286. Xu, X., Sharma, P., Shu, S., Lin, T. S., Ciais, P., Tubiello, F. N., ... & Jain, A. K. (2021). Global greenhouse gas emissions from animal–based foods are twice those of plant–based foods. Nature Food, 2(9), 724–732. Yan, S., & Wu, G. (2016). Network analysis of fine particulate matter (pm2.5) emissions in China. Scientific Reports, 6(1), 1–12. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/115704 |