BADEA, Gabriela Elena and MAIOR, Ioana and COJOCARU, Anca and CORBU, Ion (2007): The cathodic evolution of hydrogen on nickel in artificial seawater. Published in: Revue Roumaine de Chimie, 2007, 52(12), 1123–1130 (13 May 2023)
Preview |
PDF
THE CATHODIC EVOLUTION OF HYDROGEN ON NICKEL.pdf Download (216kB) | Preview |
Abstract
The hydrogen evolution reaction (HER) on Ni electrode in artificial seawater was investigated by steady-state polarisation curves and electrochemical impedance spectroscopy methods at the room temperature and at high temperatures (30–60oC). The electrochemical kinetics parameters of the HER – Tafel slope, charge transfer coefficient and exchange current density – were evaluated in accordance with the potential scan direction and temperature. The Tafel slopes are significantly higher than 120 mV/decade and they increase with the increasing of the solution temperature. The charge transfer coefficient is lower than 0.5 and it decreases with temperature. The exchange current density has a magnitude order of 10-5 A·cm-2 and its value is increasing with increasing solution temperature. The activation energy of the HER has a moderate value, that slowly decreases with the cathodic polarisation increase. The HER is controlled by the charge transfer step and by the mass transfer of the intermediate reaction product Hads on the electrode surface.
Item Type: | MPRA Paper |
---|---|
Original Title: | The cathodic evolution of hydrogen on nickel in artificial seawater |
English Title: | The cathodic evolution of hydrogen on nickel in artificial seawater |
Language: | English |
Keywords: | Hydrogen, nikel, seawater |
Subjects: | L - Industrial Organization > L6 - Industry Studies: Manufacturing > L61 - Metals and Metal Products ; Cement ; Glass ; Ceramics L - Industrial Organization > L7 - Industry Studies: Primary Products and Construction > L74 - Construction L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L94 - Electric Utilities L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L97 - Utilities: General O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O31 - Innovation and Invention: Processes and Incentives O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O32 - Management of Technological Innovation and R&D O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes |
Item ID: | 117293 |
Depositing User: | Ph.dr Ion Corbu |
Date Deposited: | 15 May 2023 14:32 |
Last Modified: | 15 May 2023 14:32 |
References: | 1. S. Trasatti, “Advances in Electrochemical Science and Engineering”, H. Gerisher and C. W. Tobias, Eds., Weinheim: VCH, 1992, vol. 2, p. 2. 2. I. Maior, G. E. Badea, A. Cojocaru and T. Badea, Procedings of the 5th International Conference URBCORR: Study and Control of Corrosion in the Perspective of Sustainable Development of Urban Distribution Grids, May 18-20, 2006, Târgu Mureş, Roumania, Printech Bucharest, 2006, p. 167. 3. N. Krstajić, M. Popović, B. Grgur, M. Vojnović and D. Šepa, J. Electroanal. Chem., 2001, 512, 16. 4. N. Krstajić, M. Popović, B. Grgur, M. Vojnović and D. Šepa, J. Electroanal. Chem., 2001, 512, 27. 5. C. Hitz and A. Lasia, J. Electroanal. Chem., 2001, 500, 213. 6. J. R. C. Salgado, M. H. S. Andrade, J. C. P. Silva and J. Tonholo, Electrochim. Acta, 2002, 47, 1997. 7. C. Rodriguez, N. Munichandraiah and A. K. Shukla, Bull.Mater. Sci., 2000, 23, 389. 8. N. V. Krstajić, B. N. Grgur, N. S. Mladenović, M. V. Vojnović and M. M. Jakšić, Electrochim. Acta, 1997, 42, 323-330. 9. B. Losiewicz, A. Budniok, A. Lasia and E. Lagiewka, Polish J. Chem., 2004, 78, 1457-1476. 10. L. Chen and A. Lasia, J. Electrochem. Soc. 1991, 138, 3321. 11. N. Spătaru, J-G. Lehelloca and R. Durand, J. Applied Electrochem., 1996, 26, 397. 12. R. Notoya, Electrochim. Acta, 1997, 42, 899. 13. G. Kreysa, B. Hakansson and P. Ekdunge, Electrochim.Acta, 1988, 33, 1351. 14. J. P. Diard, B. LeGorrec and S. Maximovitch, Electrochim. Acta, 1990, 35, 1099. 15. J. Tamm, L. Tamm and J. Arol’d, Russ. J. Electrochem., 2004, 40, 1152-1155. 16. B. C. Pound, “Modern Aspects of Electrochemistry”, J. O’M. Bockris and B. E. Conway Eds., Plenum Press, New York, 1993, vol. 25, p. 63. 17. M. Julia, J. Ferreira and M. Da Cunha Belo, Portugal.Electrochim. Acta, 2004, 22, 263. 18. B. E. Conway, “Modern Aspect of Electrochemistry”, B.E. Conway, R. E. White (Eds.), Plenum Press, New York, 1974, vol. 16, p.103. 19. H. Dumont, P. Los, A. Lasia, H. Menard and L. Brossard, J. Applied Electrochem., 1993, 23, 684. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/117293 |