Gao, jiti and Anh, vo and Heyde, christopher (1999): Statistical estimation of nonstationaryGaussian processes with long-range dependence and intermittency. Published in: Stochastic Processes and Their Applications , Vol. 99, No. 1 (March 2002): pp. 295-323.
Preview |
PDF
MPRA_paper_11972.pdf Download (233kB) | Preview |
Abstract
This paper considers statistical inference for nonstationaryGaussian processes with long-range dependence and intermittency. The existence of such a process has been established by Anh et al. (J. Statist. Plann. Inference 80 (1999) 95–110). We systematically consider the case where the spectral densityof nonstationaryGaussian processes with stationaryincrements is of a general and
Item Type: | MPRA Paper |
---|---|
Original Title: | Statistical estimation of nonstationaryGaussian processes with long-range dependence and intermittency |
Language: | English |
Keywords: | Asymptotic theory; fractional Riesz–Bessel motion; nonstationary process; long-range dependence; statistical estimation |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 11972 |
Depositing User: | jiti Gao |
Date Deposited: | 08 Dec 2008 08:36 |
Last Modified: | 28 Sep 2019 12:37 |
References: | V. Anh, J. Angulo and M. Ruiz-Medina, Possible long-range dependence in fractional random fields, J. Statist. Plann. & Inference 80 (1999) 95--110. V. Anh and C. Heyde (ed.), Special Issue on Long-Range Dependence, J. Statist. Plann. \& Inference 80, 1 (1999). V. Anh, C. Heyde and Q. Tieng, Stochastic models for fractal processes, J. Statist. Plann. \& Inference 80 (1999) 123--135. V. Anh, N. Leonenko and R. McVinish, Models for fractional Riesz-Bessel motion and related processes, Fractals 9 (2001) (in press). R. Baillie and M. King (ed.), Special Issue of Journal of Econometrics, Annals of Econometrics 73, 1 (1996). J. Beran, Statistics for Long Memory Processes (Chapman and Hall, London, 1994). P. Brockwell and R. Davis, Time Series Theory and Methods (Springer, New York, 1990). R. Dahlhaus, Efficient parameter estimation for self-similar processes, Ann. Statist. 17 (1989) 1749--1766. H. Dym and H. P. McKean, Gaussian Process, Function Theory and the Inverse Spectral Problem (Academic Press, New York, 1976). J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications (Chapman and Hall, London, 1996). P. Flandrin, On the spectrum of fractional Brownian motions, IEEE Trans. Information Theory 35 (1989) 197--199. U. Frisch, Turbulence (Cambridge University Press, New York, 1995). J. Gao, V. Anh, C. Heyde and Q. Tieng, Parameter estimation of stochastic processes with long-range dependence and intermittency, J. Time Ser. Anal. 22 (2001) 517--535. L. Giraitis and R. Leipus, A generalized fractionally differencing approach in long-memory modelling. Liet. Mat. Rink. 35 (1995) 65--81. R. Goldberg, Fourier Transforms (Cambridge University Press, New York, 1961). W. H\"{a}rdle, H. Liang and J. Gao, Partially Linear Models. Springer Series: Contributions to Statistics (Physica-Verlag, New York, 2000). C. Heyde and R. Gay, Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence, Stochastic Process. Appl. 45 (1993) 169--182. C. Hurvich and K. Beltrao, Asymptotics for the low-frequency ordinates of the periodogram of a long-memory time series, J. Time Ser. Anal. 14 (1993) 455--472. C. Hurvich, R. Deo and J. Brodsky, The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series, J. Time Ser. Anal. 19 (1998) 19--46. H. K\"{u}nsch, Discrimination between monotonic trends and long-range dependence, J. Appl. Probab. 23 (1986) 1025--1030. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum Kluwer Academic Publishers, The Netherlands, 1999). P. Robinson, Log-periodogram regression of time series with long-range dependence, Ann. Statist. 23 (1995) 1048--1072. P. Robinson, Large-sample inference for nonparametric regression with dependent errors, Ann. Statist. 25 (1997) 2054--2083. A. N. Shiryaev, Essentials of Stochastic Finance (World Scientific, Singapore, 1999). V. Solo, Intrinsic random functions and the paradox of 1/f noise. Siam J. Appl. Math. 52 (1992) 270--291. M. Vergassola and U. Frish, Wavelet transforms of self-similar processes. Physica D 54 (1991) 58--64. M. C. Viano, C. Deniau and G. Oppenheim, Continuous--time fractional ARMA processes, Statist. Probab. Lett. 21 (1994) 323--336. M. C. Viano, C. Deniau and G. Oppenheim, Long-range dependence and mixing for discrete time fractional processes, J. Time Ser. Anal. 16 (1995) 323--338. A. Yaglom, Correlation Theory of Stationary and Related Random Functions (Springer-Verlag, New York, 1986). I. Yeh, Stochastic Processes and the Wiener Integral (Marcel Dekker, New York, 1973). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/11972 |