Koundouri, Phoebe and Kourogenis, Nikolaos and Pittis, Nikitas (2012): Statistical Modeling of Stock Returns: A Historical Survey with Some Methodological Reflections. Published in:
Preview |
PDF
MPRA_paper_122422.pdf Download (340kB) | Preview |
Abstract
This paper aims at identifying the motivating forces that gave birth to the statistical models of asset returns since the beginning of the twentieth century. The major question addressed is: Where do statistical models of asset returns come from?" This central question encompasses a number of secondary ones: What do these models do? Do they explain or simply describe the empirical regularities of asset returns, identified at different historical periods? If explanation provides `something', over and above description, then how can it be defined? Moreover, how is this reflected on explanatory versus descriptive models of asset returns? In the context of the models identified as explanatory, do these models offer an actual explanation for the regularities of interest or merely a potential explanation? Related to the last question, does the realism of the assumptions underlying the explanatory models matter? Has the literature adopted a realist or an instrumentalist attitude towards the explanatory models of asset returns? Our answers to these questions are being informed by our attempts to draw some analogies between the main issues concerning the statistical modelling of asset prices and those concerning the theoretical modelling of the Brownian motion in Physics.
Item Type: | MPRA Paper |
---|---|
Original Title: | Statistical Modeling of Stock Returns: A Historical Survey with Some Methodological Reflections |
Language: | English |
Keywords: | statistical models, asset, Brownian motion, Physics |
Subjects: | B - History of Economic Thought, Methodology, and Heterodox Approaches > B4 - Economic Methodology C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling |
Item ID: | 122422 |
Depositing User: | Prof. Phoebe Koundouri |
Date Deposited: | 18 Oct 2024 13:51 |
Last Modified: | 18 Oct 2024 13:51 |
References: | [1] L. S. Ornstein, ìOn the Brownian motion,î Proc. Royal Acad. Amsterdam 21, 96-108 (1917). [2] Polya, G., 1920, Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem, Math. Zeit. vol. 8 (1920) pp. 171-181. (Change the year in the text). [3] Furth, R., (1920) Brownian motion with directional persistence. With applications to the movement of living infusoria. Zeitschrift fur Physik, 2:244-256 (in German). [4] Wiener, L. C., 1863, "Erklarung des atomistischen Wesens des tropfbará¸ssigen Korperzustandes und Bestatigung desselben durch die sogenannten Molekularbewegungen" Annalen der Physik und Chemie, 118 (1863), 79-94. [5] Alexander, S.S. (1961) Price Movements in Speculative Markets: Trends or Random Walks. Industrial Management Review, Vol. 2 (1961), pp. 7-26. [6] Antypas, Antonios , Phoebe Koundouri and Nikolaos Kourogenis, 2011, Aggregational Gaussianity and Barely Infinite Variance in Financial Returns, University of Piraeus Working Paper, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2120104 . [7] Bachelier, L., 1900, Theorie de la speculation - Gauthier-Villars (Theory of speculation in: P. Cootner, ed., 1964, The random character of stock market prices L Bachelier - 1900 - MIT Press, Cambridge, Mass). [8] Bartkiewicz, Katarzyna, Adam Jakubowski, Thomas Mikosch and Olivier Wintenberger, Stable limits for sums of dependent infnite variance random variables, Probability Theory and Related Fields 150, 3, pp. 337-372. [9] Bertrand, J. - 1889 Calcul des probabilitÈs - Gauthier-Villars Paris. [10] Billingsley, Patrick (1961), The Lindeberg-Levy Theorem for Martingales, Proceedings of the American Mathematical Society , Vol. 12, No. 5 (Oct., 1961), pp. 788-792. [11] Blattberg, R.C., and N. Gonedes. 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices." Journal of Business 47:244-280. [12] Blum, J.R., D.L. Hanson, and J.I. Rosenblatt. 1963. "On the central limit theorem for the sum of a random number of independent random variables." Probability Theory and Related Fields 1:389-393. [13] Bollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31, 3, pp. 307-327. [14] Box, G.E.P., Draper, N.R., 1987, Empirical Model-building and Response Surfaces. Wiley, New York. [15] Box, G E P, Hunter, W G, The experimental study of physical mechanisms. Technometrics 7, 1965. [16] Bradley, R. C. (1988). A central limit theorem for stationary ρ-mixing sequences with infιnite variance. The Annals of Probability 16:313-332. [17] Brown, B. M. (1971), Martingale Central Limit Theorems, The Annals of Mathematical Statistics , Vol. 42, No. 1 (Feb., 1971), pp. 59-66. [18] Brown, R., 1827, A Brief account of microscopical observations made in the months of June, July and August 1827 on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. [19] Brush, Stephen G. 1968, A History of Random Processes: I. Brownian Movement from Brown to Perrin, Archive for History of Exact Sciences , Vol. 5, No. 1 (6.8.1968), pp. 1-36. [20] Campbell, John Y., Andrew Wen-Chuan Lo, Archie Craig MacKinlay, 1997, The econometrics of financial markets, Princeton University Press, Princeton, New Jersey. [21] Carrasco, M., Chen, X., 2002. Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18, 17-39. [22] Chapman, S. (1928), On the Brownian Displacements and Thermal Diffusion of Grains Suspended in a Non-Uniform Fluid, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 119, No. 781 (May 1, 1928), pp. 34-54. [23] Clark, Peter K. 1973, A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices, Econometrica , Vol. 41, No. 1 (Jan., 1973), pp. 135-155. [24] Cootner, P. H., (1962), "Stock Prices: Random vs. Systematic Changes", Industrial Management. Review, vol. 3, spring, pp.24-45. [25] Cootner, Paul H. (1964). The random character of stock market prices. MIT Press. ISBN 9780262030090 . [26] Diebold, F. X. (1988): Empirical Modeling of Exchange Rates. New York: Springer Verlag. [27] Drost, F., Nijman, T., 1993. Temporal aggregation of GARCH processes. Econometrica 61, 909-27. [28] Einstein, A., 1905, ‹ber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Fl¸ssigkeiten suspendierten Teilchen, Annalen der Physik, Vol. 17 , pages 549-560. [29] Engle, Robert F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Ináation, Econometrica , Vol. 50, No. 4 (Jul., 1982), pp. 987-1007. [30] Fama, Eugene F. 1965b, Portfolio Analysis in a Stable Paretian Market, Management Science , Vol. 11, No. 3, Series A, Sciences (Jan., 1965), pp. 404-419. [31] Fama, Eugene F. , 1965a, Random Walks in Stock Market Prices, Financial Analysts Journal Vol. 21, No. 5 (Sep. - Oct., 1965), pp. 55-59. [32] Fama, Eugene F. 1963, Mandelbrot and the Stable Paretian Hypothesis, The Journal of Business , Vol. 36, No. 4 (Oct., 1963), pp. 420-429. [33] Fama, Eugene F. 1965. The Behavior of Stock-Market Prices, Journal of Business, Vol. 38, No. 1 (Jan., 1965), pp. 34-105 [34] Fama, Eugene F., and Marshall E. Blume, 1966, Filter Rules and Stock-Market Trading, The Journal of Business , Vol. 39, No. 1, Part 2: Supplement on Security Prices (Jan., 1966), pp. 226-241. [35] Feller, W. 1935, ‹ber den zentralen Genzwertsatz der Wahrscheinlichkeitsrechnung, Math. Z. 40, 521-559. [36] Francq, C., Zakoian, J.M., 2006. Mixing properties of a general class of GARCH (1,1) models without moment assumptions on the observed process. Econometric Theory 22, 815-834. [37] Friedman, Milton, 1953, Essays in Positive Economics, The University of Chicago Press, Chicago. [38] Gouy, M. (1888) Note sur le mouvement brownien, Journal de Physique Theorique et Appliquee Vol. 7 No. 1 p. 561. [39] Hall, P., Heyde, C. C. (1980). Martingale Limit Theory and Its Application. New York: Academic Press. [40] Hempel, C., 1965, Aspects of Scientific Explanation and Other Essays in the Philosophy of Science, New York: Free Press. [41] Hempel, D. G., Oppenheim, P., 1948, Studies in the Logic of Explanation, Philosophy of Science 15, 135-175 [42] Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables. The Annals of Probability 12:141-153. [43] Houthakker, H. S. (1961). Systematic and Random Elements in Short-Term Price Movements, American Economic Review 51, 164-172. [44] Ibragimov, I. A. (1962). Some limit theorems for stationary processes. Theory Prob. Appl. 7:349-382. [45] Ibragimov, I.A. (1975), A note on the central limit theorem for dependent random variables, Teor. Veroyatnost. i Primenen., 1975, Volume 20, Issue 1, Pages 134-140. [46] Je§rey, R. C. 1969, Statistical explanation vs Statistical inference, in N. Rescher (Editor): Essays in Honor of Carl G. Hempel: A Tribute on the Occasion of his Sixty-Fifth Birthday (Synthese Library), Springer. [47] Jensen, Michael C. The Performance of Mutual Funds in the Period 1945-1964 The Journal of Finance Vol. 23, No. 2, Papers and Proceedings of the Twenty-Sixth Annual Meeting of the American Finance Association Washington, D.C. December 28-30, 1967 (May, 1968), pp. 389-416. [48] Kac, Mark, 1947, Random Walk and the Theory of Brownian Motion, The American Mathematical Monthly , Vol. 54, No. 7, Part 1 (Aug. - Sep., 1947), pp. 369-391. [49] Kendall M. G. , 1953, The Analysis of Economic Time-Series-Part I: Prices, Journal of the Royal Statistical Society. Series A (General) Vol. 116, No. 1 (1953), pp. 11-34. [50] Khintchine, A. 1933, Asymptotische Gesetze der wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik, vol. 2, no. 4, Berlin. [51] Kon, Stanley J., 1984, Models of Stock Returns-A Comparison, The Journal of Finance , Vol. 39, No. 1 (Mar., 1984), pp. 147-165. [52] Koundouri, Phoebe & Nikolaos Kourogenis, 2011. "On the Distribution of Crop Yields: Does the Central Limit Theorem Apply?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1341-1357. [53] Koundouri, P., Kourogenis, N., and N. Pittis, 2012. "Can Statistical Models of Stock Returns ìExplainîEmpirical Regularities?", University of Piraeus Working Paper. [54] Kourogenis, N., Pittis, N., 2008. Testing for a unit root under errors with just barely infinite variance. Journal of Time Series Analysis 29, 1066-1087. [55] Larson, A. B. 1960. Measurement of a Random Process in Futures Prices. Food Research Institute Studies 1: 313ñ324. [56] Lehmann E. L. , 1990, Model Specification: The Views of Fisher and Neyman, and Later Developments, Statistical Science Vol. 5, No. 2 (May, 1990), pp. 160-168. [57] Levy, Paul (1925) Calcul des Probabilites, Paris: Gauthier-Villars. [58] Lintner, J. (1965a). The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Review of Economics and Statistics 47, 13-37. [59] Lintner, J. (1965b). Security Prices, Risk, and Maximal Gains From Diversification. Journal of Finance 20, 587-615. [60] Lyapounof, A.M. (1901), "Nouvelle forme du theoreme sur la limite de probabilite", Mem. Acad. Sci. St. Petersburg 8, 1-24 [61] Maiocchi, Roberto, 1990, The case of Brownian motion, The British Journal for the History of Science (1990), 23 : pp 257-283 [62] Mandelbrot, Benoit, (1963) "The Variation of Certain Speculative Prices," Journal of Business 36 (Oct. 1963), 394-419. [63] Mandelbrot, Benoit 1966, Forecasts of Future Prices, Unbiased Markets, and "Martingale" Models, The Journal of Business , Vol. 39, No. 1, Part 2: Supplement on Security Prices (Jan., 1966), pp. 242-255. [64] Markowitz, Harry 1952, Portfolio Selection, The Journal of Finance , Vol. 7, No. 1 (Mar., 1952), pp. 77-91. [65] Marsaglia, G. (1954). Iterated limits and the central limit theorem for dependent variables. Proc. Amer. Math. Soc. 6:987-991. [66] Melia, J. (2000). Weaseling away the indispensability argument, Mind 109 (435): 455-480. [67] Moore 1962 Regression As An Analytical Tool P. G. Moore Journal of the Royal Statistical Society. Series C (Applied Statistics)Vol. 11, No. 2 (Jun., 1962), pp. 106-119. [68] Mossin, J. (1966). Equilibrium in a Capital Asset Market. Econometrica 34, 768-783. [69] Muth, John F. , 1961, Rational Expectations and the Theory of Price Movements, Econometrica Vol. 29, No. 3 (Jul., 1961), pp. 315-335 [70] Nagel, Ernest, 1929, Nature and Convention, The Journal of Philosophy , Vol. 26, No. 7 (Mar. 28, 1929), pp. 169-182. [71] Nelson, Daniel B. (1990), Stationarity and Persistence in the GARCH(1,1) Model, Econometric Theory , Vol. 6, No. 3 (Sep., 1990), pp. 318-334. [72] Officer, R. R. 1972, The Distribution of Stock Returns, Journal of the American Statistical Association , Vol. 67, No. 340 (Dec., 1972), pp. 807-812. [73] Osborne, M. F. M. , 1959, Brownian Motion in the Stock Market, Operations Research Vol. 7, No. 2 (Mar. - Apr., 1959), pp. 145-173. [74] Peligrad, M. (1990). On Ibragimov-Iosifescu conjecture for φ-mixing sequences. Stochastic Processes and Their Applications 35:293-308. [75] Perrin, J. (1908), Líagitation moleculaire et le mouvement brownien, Comptes Rendus (Paris) 146, p. 967. [76] Perrin, J., 1909, Mouvement brownien et realite moleculaire, Annales de Chimie et de Physique, Vol. 18 (1909), pp. 5-104. [77] Perrin, Jean, 1916, Atoms, D. Van Nostrand company. [78] Popper, Karl , 1972, Objective Knowledge publ. Clarendon Press, Oxford, UK. [79] Praetz, Peter D. 1972, The Distribution of Share Price Changes, The Journal of Business , Vol. 45, No. 1 (Jan., 1972), pp. 49-55. [80] Press, S. J. (1968). A compound events model for security prices. Journal of Business, 40, 317-335. [81] Psillos, Stathis 2002, Causation and Explanation, Acumen & McGill-Queens U.P. [82] Railton, Peter 1978, A Deductive-Nomological Model of Probabilistic Explanation, Philosophy of Science , Vol. 45, No. 2 (Jun., 1978), pp. 206-226. [83] Railton, Peter 1981, Probability, Explanation, and information, Synthese , Vol. 48, No. 2, Probabilistic Explanation, Part I (Aug., 1981), pp. 233-256 [84] Renyi, A. 1960. "On the central limit theorem for the sum of a random number of independent random variables." Acta Mathematica Hungarica 11:97-102. [85] Robbins, H. 1948. "On the Asymptotic Distribution of the Sum of a Random Number of Random Variables." Proceedings of the National Academy of Sciences 34:162-163. [86] Roberts, Harry V. , 1959, Stock-Market "Patterns" and Financial Analysis: Methodological Suggestions, Journal of Finance Vol. 14, No. 1, pp. 1-10. [87] Ross, Stephen A. 1977, The arbitrage theory of capital asset pricing, Journal of Economic Theory 13, 341-360. [88] Salmon, W.C. 1971, Statistical explanation and Statistical Relevance, University of Pittsburgh Press. [89] Salmon, W.C. 1998, Causality and Explanation, Oxford University Press (New York, Oxford). [90] Samuelson Paul A. , 1973, Mathematics of Speculative Price, SIAM Review Vol. 15, No. 1 (Jan., 1973), pp. 1-42 [91] Samuelson, Paul A., (1965) Proof that Properly Anticipated Prices Fluctuate Randomly, Industrial Management Review, Vol. 6, pp. 41-49. [92] Samuelson, Paul A. 1973, Mathematics of Speculative Price, SIAM Review , Vol. 15, No. 1 (Jan., 1973), pp. 1-42. [93] Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance 19, 425-442. [94] Spanos, Aris, 2006, Where Do Statistical Models Come from? Revisiting the Problem of Specification, Lecture Notes-Monograph Series , Vol. 49, Optimality: The Second Erich L. Lehmann Symposium (2006), pp. 98-119 [95] Stanford, P. Kyle 2006, Darwinís Pangenesis and the Problem of Unconceived Alternatives, British Jnl. for the Philosophy of Sci. Volume 57, Issue 1, pp. 121-144. [96] Stegm¸ller, W., 1973, Carnapís Normative Theory of Inductive Probability, Studies in Logic and the Foundations of Mathematics, Volume 74, 1973, Pages 501-513. [97] Steiger, W (1964). A test of nonrandomness in stock price changes, in Cootner, Paul H. ed. The random character of stock market prices. [98] Taussig, F. W., 1921, Is Market Price Determinate?, The Quarterly Journal of Economics , Vol. 35, No. 3 (May, 1921), pp. 394-411. [99] Teichmoeller, John 1971, A Note on the Distribution of Stock Price Changes, Journal of the American Statistical Association , Vol. 66, No. 334 (Jun., 1971), pp. 282-284. [100] Treynor, J. (1962). Toward a Theory of Market Value of Risky Assets. Published in ed. R. A. Korajczyk: Asset Pricing and Portfolio Performance: Models, Strategy and Performance Metrics, Risk Books, 1999. [101] von Smoluchowski, M. 1906, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Annalen der Physik, SER4,T21, pp. 756-780. [102] Woodward, James 2003, Making Things Happen: A Theory of Causal Explanation, Oxford Studies in the Philosophy of Science, Oxford University Press. [103] Working, Holbrook, 1934, A Random-Difference Series for Use in the Analysis of Time Series, Journal of the American Statistical Association 29, 11-24. [104] Working, Holbrook, 1958, A Theory of Anticipatory Prices, The American Economic Review , Vol. 48, No. 2, Papers and Proceedings of the Seventieth Annual Meeting of the American Economic Association (May, 1958), pp. 188-199. [105] Zhang, R.-M., Lin, Z.-Y., 2012. Limit theory for a general class of GARCH models with just Barely infinite variance. Journal of Time Series Analysis 33:1, 161-174. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122422 |