RANDRIAMANANTENA, Rija R. (2024): Décoder l’économie pour mieux prévoir : cas de Madadagascar.
PDF
MPRA_paper_122900.pdf Download (208kB) |
Abstract
This paper presents a comparison of econometric models used for economic forecasting, focusing on Madagascar’s Gross Domestic Product (GDP). The models analyzed include OLS, ARIMA, ARIMAX and VAR, each with its advantages and limitations. The OLS model is selected for its robust performance according to AIC and SIC criteria, although a hybrid approach or the integration of modern techniques such as neural networks is recommended for more accurate forecasts. Finally, the paper underlines the importance of foreign trade (exports and imports) in economic dynamics, while stressing the need to contextualize results for informed policy decisions.
Item Type: | MPRA Paper |
---|---|
Original Title: | Décoder l’économie pour mieux prévoir : cas de Madadagascar |
English Title: | Decoding the economy for better forecasting: the case of Madadagascar |
Language: | French |
Keywords: | economic modelling, forecasting, GDP, international trade |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling E - Macroeconomics and Monetary Economics > E1 - General Aggregative Models > E10 - General F - International Economics > F1 - Trade |
Item ID: | 122900 |
Depositing User: | Rija Randriamanantena |
Date Deposited: | 08 Dec 2024 14:20 |
Last Modified: | 08 Dec 2024 14:20 |
References: | Josué R. Andrianady, Crunching the Numbers: A Comparison of Econometric Models for GDP Forecasting in Madagascar, 2023, Non publié. Ravahiny Josué Andrianady, The Complete Guide to Ordinary Least Squares (OLS) Regression Using EViews, Munich Personal RePEc Archive (MPRA), MPRA Paper No. 122199, 2024. Disponible en ligne : https://mpra.ub.uni-muenchen.de/122199/. Josué Andrianady, Michel H. P. Ranaivoson, Fitiavana Michael Randriamifidy, Thierry Miora Steffanie, Econometric Analysis and Forecasting of Madagascar’s Economy: An ARIMAX Approach, SSRN Electronic Journal, 2023. DOI : 10.2139/ssrn.4593283. D. A. Belsley, E. Kuh, R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Wiley, 1980. G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, 1976. R. Bourbonnais, Économétrie, 9ᵉ éd., Éditions Dunod, Paris, 2021. Dario Caldara, Matteo Iacoviello, Measuring Geopolitical Risk, American Economic Review, vol. 112, no. 4, pp. 1194–1225, 2022. DOI : 10.1257/aer.20191823. J. Durbin, G. S. Watson, Testing for Serial Correlation in Least Squares Regression: I, Biometrika, vol. 37, pp. 409–428, 1950. C. F. Gauss, Theoria Motus Corporum Coelestium, 1855. J. H. Stock, M. W. Watson, Introduction to Econometrics, 2ᵉ éd., Pearson, 2007. J. B. Taylor, Discretion versus Policy Rules in Practice, Carnegie-Rochester Conference Series on Public Policy, vol. 39, pp. 195–214, 1993. H. White, A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity, Econometrica, vol. 48, no. 4, pp. 817–838, 1980. J. Wright, The Tariff on Animal and Vegetable Oils, Journal of Political Economy, vol. 36, no. 5, pp. 513–531, 1928. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122900 |