Abankwah, Stephen Asare and Afriyie, Samuel Osei (2025): Modelling Sustainable Energy Transition in BRICS+ Countries: A Smoothed Common Correlated Effects Instrumental Variable Quantile Regression Approach.
![]() |
PDF
MPRA_paper_123758.pdf Download (605kB) |
Abstract
The collective goal of achieving net-zero emissions in the coming decades has sparked considerable debate in recent years. The nature of the energy transition in fossil fuel-dependent economies suggests the presence of both implicit and explicit gaps in country-level commitments to the transition. Utilizing data from 1996 to 2019 from the BRICS+ bloc, this study investigates the heterogeneous effects of key economic and environmental factors on energy transition across the distribution of energy transition levels using a smoothed quantile instrumental variable regression model with common correlated effects (CCE) adjustments. The analysis incorporates macroeconomic, environmental and governance variables, while addressing endogeneity through instrumental variables, such as fossil fuel reserves and temperature anomalies. The results reveal significant heterogeneity in the relationships across quantiles. Specifically, CO2 emissions exhibit a consistently negative impact on energy transition, with the effect fluctuating across the distribution. GDP and population growth negatively influence energy transition, with stronger effects at higher quantiles, indicating structural constraints in high-transition countries. Notably, the heterogeneity of inflation effects, though insignificant, suggests dynamic economic pressures at varying energy transition levels. These findings underline the importance of targeted, quantile-specific policy interventions to accelerate energy transition, emphasizing decarbonization and market reforms. The CCE adjustments ensure robustness by accounting for cross-sectional dependence, and sensitivity analyses confirm the validity of the results. This study contributes to the growing literature on sustainable energy by providing novel insights into the distributional dynamics of energy transition drivers.
Item Type: | MPRA Paper |
---|---|
Original Title: | Modelling Sustainable Energy Transition in BRICS+ Countries: A Smoothed Common Correlated Effects Instrumental Variable Quantile Regression Approach |
Language: | English |
Keywords: | Energy transition analysis, CO2 emissions policies, instrumental variables, common correlated effects, quantile regression |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q43 - Energy and the Macroeconomy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q50 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q56 - Environment and Development ; Environment and Trade ; Sustainability ; Environmental Accounts and Accounting ; Environmental Equity ; Population Growth |
Item ID: | 123758 |
Depositing User: | Stephen Abankwah |
Date Deposited: | 24 Feb 2025 04:50 |
Last Modified: | 24 Feb 2025 04:50 |
References: | Ackah, I., & Kizys, R. (2015). Green growth in oil producing African countries: A panel data analysis of renewable energy demand. Renewable and Sustainable Energy Reviews, 50, 1157–1166. https://doi.org/10.1016/j.rser.2015.05.030 Adebayo, T. S., Saeed Meo, M., & Özkan, O. (2024). Scrutinizing the impact of energy transition on GHG emissions in G7 countries via a novel green quality of energy mix index. Renewable Energy, 226, 120384. https://doi.org/10.1016/j.renene.2024.120384 Afshan, S., Ozturk, I., & Yaqoob, T. (2022). Facilitating renewable energy transition, ecological innovations and stringent environmental policies to improve ecological sustainability: Evidence from MM-QR method. Renewable Energy, 196, 151–160. https://doi.org/10.1016/j.renene.2022.06.125 Akarsu, G., & Gümüşoğlu, N. K. (2019). What are the Main Determinants of Renewable Energy Consumption? A Panel Threshold Regression Approach. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 19(2), Article 2. https://doi.org/10.18037/ausbd.566663 Akintande, O. J., Olubusoye, O. E., Adenikinju, A. F., & Olanrewaju, B. T. (2020). Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa. Energy, 206, 117992. https://doi.org/10.1016/j.energy.2020.117992 Alola, A. A., Özkan, O., & Usman, O. (2023). Examining crude oil price outlook amidst substitute energy price and household energy expenditure in the USA: A novel nonparametric multivariate QQR approach. Energy Economics, 120, 106613. https://doi.org/10.1016/j.eneco.2023.106613 Baek, J. (2016). A new look at the FDI–income–energy–environment nexus: Dynamic panel data analysis of ASEAN. Energy Policy, 91, 22–27. https://doi.org/10.1016/j.enpol.2015.12.045 Bhattacharya, M., Paramati, S. R., Ozturk, I., & Bhattacharya, S. (2016). The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 162, 733–741. https://doi.org/10.1016/j.apenergy.2015.10.104 Bildirici, M. E., & Kayıkçı, F. (2013). Effects of oil production on economic growth in Eurasian countries: Panel ARDL approach. Energy, 49(C), 156–161. Breusch, T. S., & Pagan, A. (1980). The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. The Review of Economic Studies, 47(1), 239–253. Burke, M., Hsiang, S. M., & Miguel, E. (2015). Climate and Conflict. Annual Review of Economics, 7(1), 577–617. https://doi.org/10.1146/annurev-economics-080614-115430 Canay, I. A. (2011). A simple approach to quantile regression for panel data. The Econometrics Journal, 14(3), 368–386. https://doi.org/10.1111/j.1368-423X.2011.00349.x Chen, C., Pinar, M., & Stengos, T. (2020). Renewable energy consumption and economic growth nexus: Evidence from a threshold model. Energy Policy, 139, 111295. https://doi.org/10.1016/j.enpol.2020.111295 Cherni, A., & Jouini, S. E. (2017). An ARDL approach to the CO2 emissions, renewable energy and economic growth nexus: Tunisian evidence. International Journal of Hydrogen Energy, 42(48), 29056–29066. https://doi.org/10.1016/j.ijhydene.2017.08.072 Chernozhukov, V., & Hansen, C. (2006). Instrumental quantile regression inference for structural and treatment effect models. Journal of Econometrics, 132(2), 491–525. https://doi.org/10.1016/j.jeconom.2005.02.009 Damette, O., & Marques, A. C. (2019). Renewable energy drivers: A panel cointegration approach. Applied Economics, 51(26), 2793–2806. https://doi.org/10.1080/00036846.2018.1558359 Deka, A., Cavusoglu, B., Dube, S., Rukani, S., & Kadir, M. O. (2023). Examining the effect of renewable energy on exchange rate in the emerging economies with dynamic ARDL bounds test approach. Renewable Energy Focus, 44, 237–243. https://doi.org/10.1016/j.ref.2023.01.003 Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature Shocks and Economic Growth: Evidence from the Last Half Century. American Economic Journal: Macroeconomics, 4(3), 66–95. https://doi.org/10.1257/mac.4.3.66 Dissanayake, H., Perera, N., Abeykoon, S., Samson, D., Jayathilaka, R., Jayasinghe, M., & Yapa, S. (2023). Nexus between carbon emissions, energy consumption, and economic growth: Evidence from global economies. PLOS ONE, 18(6), e0287579. https://doi.org/10.1371/journal.pone.0287579 Edenhofer, O., Madruga, R. P., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., & Stechow, C. von. (2012). Renewable energy sources and climate change mitigation: Special report of the Intergovernmental Panel on Climate Change. Choice Reviews Online, 49(11), 49-6309-49–6309. https://doi.org/10.5860/CHOICE.49-6309 Eibinger, T., Deixelberger, B., & Manner, H. (2024). Panel data in environmental economics: Econometric issues and applications to IPAT models. Journal of Environmental Economics and Management, 125, 102941. https://doi.org/10.1016/j.jeem.2024.102941 Ergun, S. J., & Rivas, M. F. (2023). Does higher income lead to more renewable energy consumption? Evidence from emerging-Asian countries. Heliyon, 9(1), e13049. https://doi.org/10.1016/j.heliyon.2023.e13049 Fernandes, M., Guerre, E., & Horta, E. (2021). Smoothing Quantile Regressions. Journal of Business & Economic Statistics, 39(1), 338–357. https://doi.org/10.1080/07350015.2019.1660177 Fitzenberger, B., & Wilke, R. A. (2015). Quantile Regression Methods. In Emerging Trends in the Social and Behavioral Sciences: An Interdisciplinary, Searchable, and Linkable Resource. Wiley. https://doi.org/10.1002/9781118900772.etrds0269 Fowlie, M., & Meeks, R. (2021). The Economics of Energy Efficiency in Developing Countries. Review of Environmental Economics and Policy, 15(2), 238–260. https://doi.org/10.1086/715606 Friedrichs, J., & Inderwildi, O. R. (2013). The carbon curse: Are fuel rich countries doomed to high CO2 intensities? Energy Policy, 62, 1356–1365. https://doi.org/10.1016/j.enpol.2013.07.076 Galvao, A. F. (2011). Quantile regression for dynamic panel data with fixed effects. Journal of Econometrics, 164(1), 142–157. https://doi.org/10.1016/j.jeconom.2011.02.016 Garcia-Casals, X., Ferroukhi, R., & Parajuli, B. (2019). Measuring the socio-economic footprint of the energy transition. Energy Transitions, 3(1), 105–118. https://doi.org/10.1007/s41825-019-00018-6 Gerasimchuk, W. I., Kühne, K., Roth, J., Oharenko, Y., Bridle, R., & Garg, V. (2019). Beyond Fossil Fuels: Fiscal transition in BRICS. Grossman, G. M., & Krueger, A. B. (1995). Economic Growth and the Environment*. The Quarterly Journal of Economics, 110(2), 353–377. https://doi.org/10.2307/2118443 Grubert, E., & Hastings‐Simon, S. (2022). Designing the mid‐transition: A review of medium‐term challenges for coordinated decarbonization in the United States. WIREs Climate Change, 13(3), e768. https://doi.org/10.1002/wcc.768 Gutierrez, L. (2003). On the power of panel cointegration tests: A Monte Carlo comparison. Economics Letters, 80(1), 105–111. https://doi.org/10.1016/S0165-1765(03)00066-1 Hanif, I., Aziz, B., & Chaudhry, I. S. (2019). Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia. Renewable Energy, 143, 586–595. https://doi.org/10.1016/j.renene.2019.05.032 Harding, M., & Lamarche, C. (2014). Estimating and testing a quantile regression model with interactive effects. Journal of Econometrics, 178, 101–113. https://doi.org/10.1016/j.jeconom.2013.08.010 Harding, M., Lamarche, C., & Pesaran, M. H. (2020). Common correlated effects estimation of heterogeneous dynamic panel quantile regression models. Journal of Applied Econometrics, 35(3), 294–314. https://doi.org/10.1002/jae.2753 Hong, Y., Luo, K., Xing, X., Wang, L., & Huynh, L. D. T. (2024). Exchange rate movements and the energy transition. Energy Economics, 136, 107701. https://doi.org/10.1016/j.eneco.2024.107701 Hwang, Y. K., & Sánchez Díez, Á. (2024). Renewable energy transition and green growth nexus in Latin America. Renewable and Sustainable Energy Reviews, 198, 114431. https://doi.org/10.1016/j.rser.2024.114431 Ibrahim, M. H., & Law, S. H. (2016). Institutional Quality and CO 2 Emission–Trade Relations: Evidence from Sub-Saharan Africa. South African Journal of Economics, 84(2), 323–340. IEA. (2023). World Energy Outlook 2023. World Energy Outlook 2023. https://iea.blob.core.windows.net/assets/ed1e4c42-5726-4269-b801-97b3d32e117c/WorldEnergyOutlook2023.pdf IRENA. (2024). Geopolitics of the energy transition: Energy security. International Renewable Energy Agency, Abu Dhabi. Jenkins, J. D., Luke, M., & Thernstrom, S. (2018). Getting to Zero Carbon Emissions in the Electric Power Sector. Joule, 2(12), 2498–2510. https://doi.org/10.1016/j.joule.2018.11.013 https://doi.org/10.1016/j.renene.2023.119325 Kapetanios, G., Pesaran, M. H., & Yamagata, T. (2011). Panels with non-stationary multifactor error structures. Journal of Econometrics, 160(2), 326–348. https://doi.org/10.1016/j.jeconom.2010.10.001 Kaplan, D. M., & Sun, Y. (2017). SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION. Econometric Theory, 33(1), 105–157. https://doi.org/10.1017/S0266466615000407 Kaur, H., Singh, K., Kumar, P., & Kaur, A. (2023). Assessing the environmental sustainability corridor: An empirical study of Renewable energy consumption in BRICS nation. IOP Conference Series: Earth and Environmental Science, 1110(1), 012053. https://doi.org/10.1088/1755-1315/1110/1/012053 Kazelko, A., & Semeghini, U. S. (2024). Expansion of brics: Implications for global energy markets. BRICS Journal of Economics, 5(1), Article 1. https://doi.org/10.3897/brics-econ.5.e117048 Kilian, L. (2009). Oil Price Shocks, Monetary Policy and Stagflation (SSRN Scholarly Paper 1433920). Social Science Research Network. https://papers.ssrn.com/abstract=1433920 Knight, K. W., & Schor, J. B. (2014). Economic Growth and Climate Change: A Cross-National Analysis of Territorial and Consumption-Based Carbon Emissions in High-Income Countries. Sustainability, 6(6), 1–10. Knutsen, C. H. (2012). Democracy and economic growth: A survey of arguments and results. International Area Studies Review, 15(4), 393–415. https://doi.org/10.1177/2233865912455268 Kuc-Czarnecka, M. E., Olczyk, M., & Zinecker, M. (2021). Improvements and Spatial Dependencies in Energy Transition Measures. Energies, 14(13), Article 13. https://doi.org/10.3390/en14133802 Lau, C. K., Gozgor, G., Mahalik, M. K., Patel, G., & Li, J. (2023). Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions. Energy Economics, 122, 106702. https://doi.org/10.1016/j.eneco.2023.106702 Lee, C.-C., & Chang, C.-P. (2007). The impact of energy consumption on economic growth: Evidence from linear and nonlinear models in Taiwan. Energy, 32(12), 2282–2294. https://doi.org/10.1016/j.energy.2006.01.017 Lee, C.-C., Chang, C.-P., & Chen, P.-F. (2008). Energy-income causality in OECD countries revisited: The key role of capital stock. Energy Economics, 30(5), 2359–2373. https://doi.org/10.1016/j.eneco.2008.01.005 Li, B., Zheng, S., & Majeed, M. T. (2023). Pathways for China’s sustainable energy transition: Examining the effects of exchange rate volatility on renewable energy investment. Energy & Environment, 0958305X231209417. https://doi.org/10.1177/0958305X231209417 Li, J., Zhang, X., Ali, S., & Khan, Z. (2020). Eco-innovation and energy productivity: New determinants of renewable energy consumption. Journal of Environmental Management, 271, 111028. https://doi.org/10.1016/j.jenvman.2020.111028 Liddle, B., & Lung, S. (2010). Age-structure, urbanization, and climate change in developed countries: Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts. Population and Environment, 31(5), 317–343. https://doi.org/10.1007/s11111-010-0101-5 Majumder, S. C., Voumik, L. C., Rahman, M. H., Rahman, M. M., & Hossain, M. N. (2023). A Quantile Regression Analysis of the Impact of Electricity Production Sources on CO2 Emission in South Asian Countries. Strategic Planning for Energy and the Environment, 307–330. https://doi.org/10.13052/spee1048-5236.4223 Mazza, D., & Canuto, E. (2024). Depletion of fossil fuel reserves and projections of CO$_2$ concentration in the Earth atmosphere. Environmental Modeling & Assessment, 29(6), 1167–1187. https://doi.org/10.1007/s10666-024-09985-7 Omri, A., Daly, S., Rault, C., & Chaibi, A. (2015). Financial development, environmental quality, trade and economic growth: What causes what in MENA countries. Energy Economics, 48, 242–252. https://doi.org/10.1016/j.eneco.2015.01.008 Owjimehr, S., & Samadi, A. (2022). Threshold Effects of Economic Complexity and Globalization on the Energy Transition in the European Union. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4053504 Pesaran, M. H. (2003). Estimation and Inference in Large Heterogenous Panels with Cross Section Dependence (SSRN Scholarly Paper 385123). https://doi.org/10.2139/ssrn.385123 Pesaran, M. H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure. Econometrica, 74(4), 967–1012. https://doi.org/10.1111/j.1468-0262.2006.00692.x Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312. https://doi.org/10.1002/jae.951 Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., & Peregon, A. (2020). Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 10(1), 3–6. https://doi.org/10.1038/s41558-019-0659-6 Pokrovski, V. N. (2003). Energy in the theory of production. Energy, 28(8), 769–788. https://doi.org/10.1016/S0360-5442(03)00031-8 Rasoulinezhad, E., Taghizadeh-Hesary, F., Sung, J., & Panthamit, N. (2020). Geopolitical Risk and Energy Transition in Russia: Evidence from ARDL Bounds Testing Method. Sustainability, 12(7), Article 7. https://doi.org/10.3390/su12072689 Russel, S. (2016). A recommended methodology for estimating and reporting the potential greenhouse gasemissions from fossil fuel reserves [Dataset]. https://doi.org/10.1163/9789004322714_cclc_2016-0020-005 Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Economics, 31(3), 456–462. https://doi.org/10.1016/j.eneco.2008.12.010 Sadorsky, P. (2010). The impact of financial development on energy consumption in emerging economies. Energy Policy, 38(5), 2528–2535. https://doi.org/10.1016/j.enpol.2009.12.048 Shah, M. H., Ullah, I., Salem, S., Ashfaq, S., Rehman, A., Zeeshan, M., & Fareed, Z. (2022). Exchange Rate Dynamics, Energy Consumption, and Sustainable Environment in Pakistan: New Evidence From Nonlinear ARDL Cointegration. Frontiers in Environmental Science, 9(814666). https://doi.org/10.3389/fenvs.2021.814666 Smil, V. (2017). Energy Transitions: Global and National Perspectives. Bloomsbury Academic. Taghizadeh-Hesary, F., & Rasoulinezhad, E. (2020). Analyzing Energy Transition Patterns in Asia: Evidence From Countries With Different Income Levels. Frontiers in Energy Research, 8. https://www.frontiersin.org/articles/10.3389/fenrg.2020.00162 Thombs, R. P. (2022). A Guide to Analyzing Large N, Large T Panel Data. Socius, 8, 23780231221117645. https://doi.org/10.1177/23780231221117645 Tugcu, C. T. (2018). Panel Data Analysis in the Energy-Growth Nexus (EGN). In The Economics and Econometrics of the Energy-Growth Nexus (pp. 255–271). Elsevier. https://doi.org/10.1016/B978-0-12-812746-9.00008-0 Wen, J., Yang, F., & Xu, Y. (2024). Coal consumption and carbon emission reductions in BRICS countries. PLOS ONE, 19(3), e0300676. https://doi.org/10.1371/journal.pone.0300676 Wiedmann, T., Lenzen, M., Keyßer, L. T., & Steinberger, J. K. (2020). Scientists’ warning on affluence. Nature Communications, 11(1), 3107. https://doi.org/10.1038/s41467-020-16941-y Yazdanie, M., Frimpong, P. B., Dramani, J. B., & Orehounig, K. (2024). Depreciating currency impacts on local-scale energy system planning: The case study of Accra, Ghana. Energy Strategy Reviews, 53, 101362. https://doi.org/10.1016/j.esr.2024.101362 York, R., & McGee, J. A. (2017). Does Renewable Energy Development Decouple Economic Growth from CO2 Emissions? Socius, 3, 2378023116689098. https://doi.org/10.1177/2378023116689098 York, R., & Rosa, E. A. (2003). Key Challenges to Ecological Modernization Theory: Institutional Efficacy, Case Study Evidence, Units of Analysis, and the Pace of Eco-Efficiency. Organization & Environment, 16(3), 273–288. https://doi.org/10.1177/1086026603256299 Yu, Z., & Guo, X. (2023). Influencing factors of green energy transition: The role of economic policy uncertainty, technology innovation, and ecological governance in China. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.1058967 Zambrano-Monserrate, M. A. (2024). Clean energy production index and CO2 emissions in OECD countries. Science of The Total Environment, 907, 167852. https://doi.org/10.1016/j.scitotenv.2023.167852 Zheng, C., Shin, Y., & Chen, J. (2024). Dynamic Quantile Panel Data Models with Interactive Effects *. https://doi.org/10.2139/ssrn.4910743 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/123758 |