Aknouche, Abdelhakim and Almohaimeed, Bader and Dimitrakopoulos, Stefanos (2025): A beta prime ARMA model for positive time series.
![]() |
PDF
MPRA_paper_123873.pdf Download (475kB) |
Abstract
A class of generalized ARMA models with an identity link function and a conditional beta prime (BP-ARMA) distribution is proposed for modeling positive time series. Sufficient and necessary conditions for the existence of an ergodic stationary BP-ARMA process having finite moments are first proposed. Then, the parameters are estimated using the geometric quasi-maximum likelihood method, the convergence and asymptotic normality of which are shown under reasonable assumptions. The proposed methodology is illustrated through a simulation study and an application to the S&P 500 volume.
Item Type: | MPRA Paper |
---|---|
Original Title: | A beta prime ARMA model for positive time series |
English Title: | A beta prime ARMA model for positive time series |
Language: | English |
Keywords: | Nonnegative time series data, Beta Prime ARMA, Generalized ARMA, ergodicity, Two-stage weighted least squares, Geometric QMLE. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C41 - Duration Analysis ; Optimal Timing Strategies |
Item ID: | 123873 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 14 Mar 2025 08:02 |
Last Modified: | 14 Mar 2025 08:02 |
References: | Aknouche, A. and Scotto, M.G. (2024). A multiplicative thinning-based integer-valued GARCH model. Journal of Time Series Analysis 45, 4-26. Aknouche, A. and Dimitrakopoulos, S. (2023). Autoregressive conditional proportion: A multiplicative-error model for (0, 1)-valued time series. Journal of Time Series Analysis 44, 393-417. Aknouche, A. and Francq, C. (2023). Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models. Journal of Econometrics, 237, 105174. Aknouche, A. and Francq, C. (2022). Stationarity and ergodicity of Markov-Switching positive conditional mean models. Journal of Time Series Analysis, 43, 436-459. Aknouche, A., Almohaimeed, B.S. and Dimitrakopoulos, S. (2022). Periodic autoregressive conditional duration. Journal of Time Series Analysis 43, 5--29. Aknouche, A. and Francq, C. (2021). Count and Duration time series with equal conditional stochastic and mean orders. Econometric Theory 37, 248--280. Aknouche, A., Bendjeddou, S. and Touche, N. (2018). Negative binomial quasi-likelihood inference for general integer-valued time series models. Journal of Time Series Analysis 39, 192--211. Aknouche, A. and Bendjeddou, S. (2017). Estimateur du quasi-maximum de vraisemblance géométrique d'une classe générale de modèles de séries chronologiques à valeurs entières. Comptes Rendus Mathematique 355, 99--104. Aknouche, A. (2012). Multistage weighted least squares estimation of ARCH processes in the stable and unstable cases. Statistical Inference for Stochastic processes 15, 241--256. Almohaimeed, B.S. (2024). Asymptotic negative binomial quasi-maximum likelihood inference for periodic integer time series models. Communications in Statistics - Theory and Methods, 53, 587-606. Almohaimeed, B.S. (2022a). Periodic stationarity conditions for mixture periodic INGARCH models. AIMS Mathematics 7, 9809--9824. Almohaimeed, B.S. (2022b). A negative binomial autoregression with a linear conditional variance-to-mean function. Fractals 30, 1-14. Benjamin, M.A., Rigby, R.A. and Stasinopoulos, D.M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association 98, 214--223. Bhogal, S.K. and Variyam, R.T. (2019). Conditional duration models for high-frequency data: A review on recent developments. Journal of Economic Surveys 33, 252--273. Billingsley, P. (2008). Probability and measure (3rd edn). John Wiley. Bourguignon, M., Santos-Neto, M., and de Castro, M. (2021). A new regression model for positive data. Merton 79, 33--55. Caporin, M., Rossi, E., and Santucci de Magistris, P. (2017). Chasing volatility: a persistent multiplicative error model with jumps. Journal of Econometrics 198, 122--145. Cipollini, F., Engle, R. and Gallo. G.M. (2013). Semiparametric Vector MEM. Journal of Applied Econometrics 28, 1067--86. Cipollini, F. and Gallo. G.M. (2022). Multiplicative Error Models: 20 years on. Econometrics and Statistics, 33, 209-229. Chou, R.Y. (2005). Forecasting financial volatilities with extreme values: The conditional autoregressive range (CARR) Model. Journal of Money, Credit, and Banking 37, 561--582. Chou, R.Y., Chou, H. and Liu, N. (2015). Range volatility: A review of models and empirical studies, in Handbook of Financial Econometrics and Statistics (Eds.) C.-F. Lee and J. C. Lee, Springer New York, New York, NY, pp. 2029--2050. Gallo. G.M. and Otranto, E. (2018). Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach. Journal of the Royal Statistical Society C67, 549--573. Engle, R. (2002). New frontiers for Arch models. Journal of Applied Econometrics 17, 425--446. Engle, R. and Gallo, G.M. (2006). A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131, 3--27. Engle, R. and Russell, J. (1998). Autoregressive conditional duration: A new model for irregular spaced transaction data. Econometrica 66, 1127--1162. Francq, C. and Zakoian, J.-M. (2019) GARCH models: structure, statistical inference and financial applications. John Wiley & Sons, Second Edition. Gallo, G.M. and Otranto, E. (2018). Combining sharp and smooth transitions in volatility dynamics: a fuzzy regime approach. Journal of the Royal Statistical Society C67, 549--573. Gourieroux, C., Monfort, A. and Trognon, A. (1984a). Pseudo maximum likelihood methods: Theory. Econometrica 52, 681--700. Gourieroux, C., Monfort, A. and Trognon, A. (1984b). Pseudo maximum likelihood methods: Applications to Poisson models. Econometrica 52, 701--720. Hautsch, N. (2012). Econometrics of Financial High-Frequency Data. Berlin, Heidelberg: Springer. Hujer, R. and Vuletic, S. (2007). Econometric analysis of financial trade processes by discrete mixture duration models. Journal of Economic Dynamics and Control 31, 635--667. Johnson, N.L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate distributions. Wiley, 2nd Edition. Li, Q. (2020). Location multiplicative error models with quasi maximum likelihood estimation. Journal of Time Series Analysis 41, 387--405. McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models (2nd edn). London: Chapman and Hall. Moghaddam, M.D., Liu, J. and Serota, R.A. (2021). Implied and realized volatility: A study of distributions and the distribution of difference. International Finance & Economics 26, 2581-2594. Pacurar, M. (2008). Autoregressive Conditional Duration (ACD) Models in Finance: A Survey of the Theoretical and Empirical Literature. Journal of Economic Surveys 22, 711--751. Yu, Y. (2009) Stochastic ordering of exponential family distributions and their mixtures. Journal of Applied Probability 46, 244--254. Wooldridge, J.M. (1999) Quasi-Likelihood Methods for Count Data. In M.H. Pesaran and P. Schmidt (edn), Handbook of Applied Econometrics, Volume 2: Microeconomics, (pp. 35--406). Oxford: Blackwell. Zheng, T., Xiao, H. and Chen, R. (2015). Generalized ARMA with martingale difference errors. Journal of Econometrics 189, 492--506. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/123873 |