Koundouri, Phoebe and Alamanos, Angelos and Arampatzidis, Ioannis and Devves1, Stathis and Sachs, Jeffrey D (2025): Comparing two simulation approaches of an energy-emissions model: Debating analytical depth with policymakers’ expectations. Forthcoming in:
![]() |
PDF
MPRA_paper_124147.pdf Download (957kB) |
Abstract
As global commitments to decarbonization intensify, energy-emission models are becoming increasingly vital for policymaking, offering data-driven insights to evaluate the feasibility and impact of climate strategies. These models help governments design evidence-based policies, assess mitigation pathways, and ensure alignment with national and international targets, such as the Paris Agreement and the EU Green Deal. Researchers often spend a lot of time considering their modelling choices to develop the best possible tools in terms of data-requirements, accuracy, computational demand, while there is always a ‘debate’ of complexity versus explicability and ready-to-use models for policymaking. Especially for energy-emissions models, given their increasing policy-relevance, and the need to provide insights fast for short-term policies (e.g. 2030, or 2050 net-zero goals), such considerations become increasingly pressing. In this paper, we present two different versions of the same energy-emissions model, and we run them for the same study area, planning horizon, and scenario analysis. The two versions differ only in how they approach complexity: Version1 is a more ‘detailed’, complex model, while Version2 is a ‘simpler’ and less data-hungry one. A set of evaluation criteria was then used to qualitatively compare these two versions, based on modelling- and policymaking-related considerations, debating modelers’ and policymakers’ expectations and preferences. We reflect on best modelling practices, discuss different goal-dependent approaches, providing useful guidance for modelers and policymakers
Item Type: | MPRA Paper |
---|---|
Original Title: | Comparing two simulation approaches of an energy-emissions model: Debating analytical depth with policymakers’ expectations |
English Title: | Comparing two simulation approaches of an energy-emissions model: Debating analytical depth with policymakers’ expectations |
Language: | English |
Keywords: | Energy-emissions modelling; Decarbonization pathways; Model development; LEAP; Models to policy |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q41 - Demand and Supply ; Prices Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q50 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q58 - Government Policy |
Item ID: | 124147 |
Depositing User: | Prof. Phoebe Koundouri |
Date Deposited: | 28 Mar 2025 15:27 |
Last Modified: | 28 Mar 2025 15:27 |
References: | Alamanos, A., & Garcia, J. A. (2024). Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs. Encyclopedia, 4(1), Article 1. https://doi.org/10.3390/encyclopedia4010022 Alamanos, A., Latinopoulos, D., Loukas, A., & Mylopoulos, N. (2020). Comparing Two Hydro-Economic Approaches for Multi-Objective Agricultural Water Resources Planning. Water Resources Management, 34(14), 4511–4526. https://doi.org/10.1007/s11269-020-02690-6 Alamanos, A., Rolston, A., & Papaioannou, G. (2021). Development of a Decision Support System for Sustainable Environmental Management and Stakeholder Engagement. Hydrology, 8(1), Article 1. https://doi.org/10.3390/hydrology8010040 Arampatzidis, I., Devves, S., Alamanos, A., Dellis, K., Christopher, D., & Koundouri, P. (2025). A model-based assessment of the Greek National Energy and Climate Plan under a water-energy-food-emissions nexus context. EAERE. Dekker, M. M., Daioglou, V., Pietzcker, R., Rodrigues, R., de Boer, H.-S., Dalla Longa, F., Drouet, L., Emmerling, J., Fattahi, A., Fotiou, T., Fragkos, P., Fricko, O., Gusheva, E., Harmsen, M., Huppmann, D., Kannavou, M., Krey, V., Lombardi, F., Luderer, G., … van Vuuren, D. (2023). Identifying energy model fingerprints in mitigation scenarios. Nature Energy, 8(12), 1395–1404. https://doi.org/10.1038/s41560-023-01399-1 ELSTAT. (2024). Main Page ELSTAT - the Hellenic Statistical Authority. https://www.statistics.gr/en/home/ EUROSTAT. (2024). Energy balances. https://ec.europa.eu/eurostat/web/energy/database/additional-data#Energy%20balances Greek Ministry of Energy and Environment. (2024). National Energy and Climate Plan (NECP). Greek Ministry of Energy and Environment. https://ypen.gov.gr/energeia/esek/ Heaps, C. G. (2022). LEAP: The Low Emissions Analysis Platform (Version 2024.1.1.15) [Computer software]. Stockholm Environment Institute. https://leap.sei.org Henke, H., Dekker, M., Lombardi, F., Pietzcker, R., Fragkos, P., Zakeri, B., Rodrigues, R., Sitarz, J., Emmerling, J., Fattahi, A., Dalla Longa, F., Tatarewicz, I., Fotiou, T., Lewarski, M., Huppmann, D., Kavvadias, K., van der Zwaan, B., & Usher, W. (2024). Comparing energy system optimization models and integrated assessment models: Relevance for energy policy advice. Open Research Europe, 3, 69. https://doi.org/10.12688/openreseurope.15590.2 IEA. (2023). Energy Policy Review: Greece 2023. https://www.iea.org/reports/greece-2023 IPCC. (2014). Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Draft conclusions proposed by the Chair. https://unfccc.int/documents/8496?gad_source=1&gclid=Cj0KCQiAi_G5BhDXARIsAN5SX7qZkQc1UmZZswcJBJbVJ8oMBbQwb7LCsAc2BeLvTy4wit5eIgCllREaAm5EEALw_wcB Johansson, D. J. A., Lucas, P. L., Weitzel, M., Ahlgren, E. O., Bazaz, A. B., Chen, W., den Elzen, M. G. J., Ghosh, J., Grahn, M., Liang, Q.-M., Peterson, S., Pradhan, B. K., van Ruijven, B. J., Shukla, P. R., van Vuuren, D. P., & Wei, Y.-M. (2015). Multi-model comparison of the economic and energy implications for China and India in an international climate regime. Mitigation and Adaptation Strategies for Global Change, 20(8), 1335–1359. https://doi.org/10.1007/s11027-014-9549-4 Koundouri, P., Alamanos, A., Devves, S., Landis, C., & Dellis, K. (2024). Innovations for Holistic and Sustainable Transitions. Energies, 17(20), Article 20. https://doi.org/10.3390/en17205184 Koundouri, P., Alamanos, A., Plataniotis, A., Stavridis, C., Perifanos, K., & Devves, S. (2024). Assessing the sustainability of the European Green Deal and its interlin kages with the SDGs. Npj Climate Action, 3(1), 23. https://doi.org/10.1038/s44168-024-00104-6 Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005 Myung, J. I., & Pitt, M. A. (2018). Model Comparison in Psychology. In Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience (pp. 1–34). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119170174.epcn503 Ruhnau, O., Bucksteeg, M., Ritter, D., Schmitz, R., Böttger, D., Koch, M., Pöstges, A., Wiedmann, M., & Hirth, L. (2022). Why electricity market models yield different results: Carbon pricing in a model-comparison experiment. Renewable and Sustainable Energy Reviews, 153, 111701. https://doi.org/10.1016/j.rser.2021.111701 Timilsina, G. R., Pang, J., & Xi, Y. (2021). Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models. Renewable and Sustainable Energy Reviews, 151, 111551. https://doi.org/10.1016/j.rser.2021.111551 Wietschel, M., Fichtner, W., & Rentz, O. (1997). Integration of price-depending demand reactions in an optimising energy emission model for the development of CO2-mitigation strategies. European Journal of Operational Research, 102(3), 432–444. https://doi.org/10.1016/S0377-2217(97)00209-9 World Bank. (2023). Urban-Rural Population Growth. https://data.worldbank.org/indicator/SP.RUR.TOTL.ZG?locations=EU Yang, F., & Wang, C. (2023). Clean energy, emission trading policy, and CO2 emissions: Evidence from China. Energy & Environment, 34(5), 1657–1673. https://doi.org/10.1177/0958305X221094581 Yeh, S., Yang, C., Gibbs, M., Roland-Holst, D., Greenblatt, J., Mahone, A., Wei, D., Brinkman, G., Cunningham, J., Eggert, A., Haley, B., Hart, E., & Williams, J. (2016). A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California. Energy Strategy Reviews, 13–14, 169–180. https://doi.org/10.1016/j.esr.2016.10.001 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/124147 |