Johnson, Joseph F. (2013): Hilbert's Sixth Problem: Descriptive Statistics as New Foundations for Probability: Lévy Processes. Published in: Revista Investigación Operacional , Vol. 35, No. 2 (April 2014): pp. 173-179.
Preview |
PDF
MPRA_paper_1242.pdf Download (189kB) | Preview |
Abstract
Hay esbozos según los cuales las probabilidades se cuentan como la fundación de la teoría matemática de las estadísticas. Mas la significación física de las probabilidades matemáticas son oscuros, muy poco entendidos. Parecíera mejor que las probabilidades físicas se fundaran en las estadísticas descriptivas de datos fisicales. Se trata una teoría que así responde a una cuestiona de Hilbert propuesta en su Problema Número Seis, la axiomatización de la Física. Esta está basada en la auto-correlación de los series temporales. Casi todas de las funciones de auto-correlación de las trayectorías de un sistema dinámico lineal (con un numbero bastante grande de grados de libertad) son todas aproximadamente iguales, no importan las condiciones iniciales, aún si el sistema no sea ergódico, como conjeturó Khintchine en 1943.
Item Type: | MPRA Paper |
---|---|
Original Title: | Hilbert's Sixth Problem: Descriptive Statistics as New Foundations for Probability: Lévy Processes |
Language: | English |
Keywords: | Time-series; Physical Probability; Lévy Process; |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C44 - Operations Research ; Statistical Decision Theory C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C65 - Miscellaneous Mathematical Tools |
Item ID: | 1242 |
Depositing User: | Joseph Johnson |
Date Deposited: | 26 May 2014 19:17 |
Last Modified: | 30 Sep 2019 22:46 |
References: | [1] D. Hilbert, ``Problèmes Mathématiques,'' Compte Rendu du Deuxième Congrès International des Mathematiciens Tenu à Paris du 6 au 12 août 1900, Paris, 1902, pp. 81--83. [2] L. Corry, ``On the Origins of Hilbert's Sixth Problem: Physics and the Empiricist Approach to Axiomatization.'' In: Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, vol. 3, pp. 1697--1718. [3] A. Kolmogoroff, talk given at the 1970 ICM at Nice, France, unpublished. [4] P. A. M. Dirac, Principles of Quantum Mechanics, 1st ed., Oxford, 1930, p. 10 [5] W. Burnside, ``On the Idea of Frequency,'' Proc. Camb. Phil. Soc. 22 (1925), 726. [6] J. Littlewood, ``The Dilemma of Probability Theory,'' p. 32. In: J. Littlewood, A Mathematician's Miscellany, Cambridge, 1956. [7] A. Kolmogoroff, ``Teoriya Veroyatnostey,'' pp. 261--262. In: A. Alexandroff, A. Kolmogoroff, and M. Lavrentieff, eds., Matematika, yeyo Soderzhanie, Metody, i Znacheniya, 2nd ed., vol. 2, Moscow, 1956, pp. 252--284. [8] J. von Plato, ``Ergodic Theory and the Foundations of Probability.'' In: B. Skyrms and W. Harper, eds., Causation, Chance, and Credence, Proceedings of the Irvine Conference on Probability and Causation, vol.\ 1, Dordrecht, 1988, pp. 257--277. [9] J. von Plato, personal communication. [10] P. Lèvy, Processes Stochastiques et Mouvement Brownien, Paris, 1948. [11] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications, Cambridge, Mass., 1949, p. 18. [12] R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, New York, 1965, p. 22. [13] J. Johnson, ``Statistical Mechanics of Amplifying Apparatus.'' In: S. Catto and B. Nicolescu, eds., Proc. VIII International Wigner Symposium, New York City, 2003. [14] J. Johnson, ``Thermodynamic Limits, Non-Commutative Probability, and Quantum Entanglement.'' In: P. Argyres et al., eds., Quantum Theory and Symmetries, Proceedings of the Third International Symposium, Cincinnati, 2003, Singapore, 2004, pp. 133--143. [15] P. Masani and N. Wiener, ``Non-linear Prediction.'' In: U. Grenander, ed., Probability and Statistics, The Harald Cramer Volume, Stockholm, 1959, p. 197. [16] I. Guelfand and N. Vilenkin, Les distributions tome 4: applications de l'analyse harmonique, Paris, 1967, pp. 237f. [17] W. Pauli, Pauli Lectures on Physics, volume 4, Statistical Mechanics, Cambridge, Mass., 1973, pp. 28f. [18] G. Ford, M. Kac, and P. Mazur, ``Statistical Mechanics of Assemblies of Coupled Oscillators,'' J. Math. Phys. 6 (1965), pp. 504--515. [19] A. Khintchine, Matematichiskie Osnovaniya Statisticheskoi Mekhaniki, Moscow, 1943. English translation, Mathematical Foundations of Statistical Mechanics, New York, 1949. [20] J. Johnson, ``Some Special Cases of Khintchine's Conjectures in Statistical Mechanics: Approximate Ergodicity of the Auto-Correlation Functions of an Assembly of Linearly Coupled Oscillators,'' Revista Investigación Operacional 33, no. 3, pp. 99--113. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/1242 |