Koundouri, Phoebe and Alamanos, Angelos and Deranian, Christopher and Garcia, Jorge Andres and Nisiforou, Olympia (2025): Too hard to decarbonize: Insights from a decision support tool for the Greek maritime operations. Forthcoming in:
![]() |
PDF
MPRA_paper_124236.pdf Download (1MB) |
Abstract
The Greek maritime sector, one of the largest in the world, faces multiple economic, environmental and development challenges, requiring careful long-term investment decisions. In this paper we present the application of a free, open-source Investment Decision Support tool we have developed, the MaritimeGCH, applied for the Greek fleet. We quantify the effect of two main interventions for a cost-effective carbon abatement, under the recent EU environmental regulations: the implementation of mature on-ship emission reduction technologies and transition scenarios to cleaner fuels. While significant emissions are achievable, even ambitious interventions fall short of fully decarbonizing the sector by 2050. This suggests that a more unified set of policy solutions are needed to achieve the national commitments.
Item Type: | MPRA Paper |
---|---|
Original Title: | Too hard to decarbonize: Insights from a decision support tool for the Greek maritime operations |
Language: | English |
Keywords: | Shipping, maritime, clean fuels, decarbonization, ETS |
Subjects: | D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty L - Industrial Organization > L9 - Industry Studies: Transportation and Utilities > L92 - Railroads and Other Surface Transportation Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q55 - Technological Innovation Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q56 - Environment and Development ; Environment and Trade ; Sustainability ; Environmental Accounts and Accounting ; Environmental Equity ; Population Growth Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q58 - Government Policy |
Item ID: | 124236 |
Depositing User: | Prof. Phoebe Koundouri |
Date Deposited: | 12 Apr 2025 07:41 |
Last Modified: | 12 Apr 2025 07:41 |
References: | 1. Sustainable Development in Shipping and Ports, World Bank (2023). https://www.worldbank.org/en/topic/transport/brief/sustainable-development-in-shipping-and-ports. 2. Shipping Efficiency, RMI. https://rmi.org/our-work/shipping-efficiency/. 3. Initial IMO GHG Strategy. https://www.imo.org/en/MediaCentre/HotTopics/pages/reducing-greenhouse-gas-emissions-from-ships.aspx. 4. J. van Leeuwen, The regionalization of maritime governance: Towards a polycentric governance system for sustainable shipping in the European Union. Ocean Coast. Manag. 117, 23–31 (2015). 5. H. Johnson, L. Styhre, Increased energy efficiency in short sea shipping through decreased time in port. Transp. Res. Part Policy Pract. 71, 167–178 (2015). 6. M. S. Eide, C. Chryssakis, Ø. Endresen, CO2 abatement potential towards 2050 for shipping, including alternative fuels. Carbon Manag. 4, 275–289 (2013). 7. H. N. Psaraftis, C. A. Kontovas, Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transp. Res. Part C Emerg. Technol. 26, 331–351 (2013). 8. Decarbonising maritime transport – FuelEU Maritime - European Commission. https://transport.ec.europa.eu/transport-modes/maritime/decarbonising-maritime-transport-fueleu-maritime_en. 9. A. Alexandropoulou, P. Koundouri, Lydia Papadaki, K. Kontaxaki, “New Challenges and Opportunities for Sustainable Ports: The Deep Demonstration in Maritime Hubs Project” in ResearchGate (2024; https://www.researchgate.net/publication/348084256_New_Challenges_and_Opportunities_for_Sustainable_Ports_The_Deep_Demonstration_in_Maritime_Hubs_Project). 10. National Energy and Climate Plan, Υπουργείο Περιβάλλοντος και Ενέργειας. https://ypen.gov.gr/energeia/esek/. 11. Shipping industry urges governments to take forward USD 5 billion proposal to accelerate the decarbonisation of maritime transport, International Chamber of Shipping. https://www.ics-shipping.org/press-release/shipping-industry-urges-governments-to-take-forward-usd-5-billion-proposal-to-accelerate-the-decarbonisation-of-maritime-transport/. 12. T. Smith, D. Baresic, J. Fahnestock, C. Balbraith, C. Perico, I. Rojon, A. Shaw, “A Strategy for the Transition to Zero-Emission Shipping” (UMAS, 2021). 13. A. Al-Enazi, Y. Bicer, E. C. Okonkwo, T. Al-Ansari, Evaluating the utilisation of clean fuels in maritime applications: A techno-economic supply chain optimization. Fuel 322, 124195 (2022). 14. S. Wang, Q. Meng, Sailing speed optimization for container ships in a liner shipping network. Transp. Res. Part E Logist. Transp. Rev. 48, 701–714 (2012). 15. M. Perčić, N. Vladimir, A. Fan, Techno-economic assessment of alternative marine fuels for inland shipping in Croatia. Renew. Sustain. Energy Rev. 148, 111363 (2021). 16. A Roadmap towards the Decarbonization of Shipping: A Participatory Approach in Cyprus. https://www.mdpi.com/2071-1050/14/4/2185. 17. S. Franz, N. Campion, S. Shapiro-Bengtsen, R. Bramstoft, D. Keles, M. Münster, Requirements for a maritime transition in line with the Paris Agreement. iScience 25, 105630 (2022). 18. S. Franz, R. Bramstoft, Impact of endogenous learning curves on maritime transition pathways. Environ. Res. Lett. 19, 054014 (2024). 19. N. Patankar, H. Eshraghi, A. R. de Queiroz, J. F. DeCarolis, Using robust optimization to inform US deep decarbonization planning. Energy Strategy Rev. 42, 100892 (2022). 20. A. Sinha, A. Venkatesh, K. Jordan, C. Wade, H. Eshraghi, A. R. de Queiroz, P. Jaramillo, J. X. Johnson, Diverse decarbonization pathways under near cost-optimal futures. Nat. Commun. 15, 8165 (2024). 21. M. V. Migo-Sumagang, K. B. Aviso, D. C. Y. Foo, M. Short, P. N. S. B. Nair, R. R. Tan, Optimization and decision support models for deploying negative emissions technologies. PLOS Sustain. Transform. 2, e0000059 (2023). 22. P. Balcombe, J. Brierley, C. Lewis, L. Skatvedt, J. Speirs, A. Hawkes, I. Staffell, How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 182, 72–88 (2019). 23. T. A. McKenney, The impact of maritime decarbonization on ship design: State-of-the-Art Report. Int. Mar. Des. Conf., doi: 10.59490/imdc.2024.907 (2024). 24. R. T. Poulsen, S. Ponte, H. Sornn-Friese, Environmental upgrading in global value chains: The potential and limitations of ports in the greening of maritime transport. Geoforum 89, 83–95 (2018). 25. A. Alamanos, O. Nisiforou, J. Garcia, L. Papadaki, P. Koundouri, MaritimeGCH, Unpublished (2024); https://doi.org/10.13140/RG.2.2.35892.87680. 26. A. Alamanos, The Global Climate Hub. Nat. Sustain. 7, 375–376 (2024). 27. CO2 emissions from global shipping, OECD (2023). https://www.oecd.org/en/publications/co2-emissions-from-global-shipping_bc2f7599-en.html. 28. FuelEU Maritime, DNV. https://www.dnv.com/maritime/insights/topics/fueleu-maritime/. 29. Executive summary – Greece 2023 – Analysis, IEA. https://www.iea.org/reports/greece-2023/executive-summary. 30. A. Alamanos, J. A. Garcia, Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs. Encyclopedia 4, 295–312 (2024). 31. ‘Fit for 55’: delivering the EU’s 2030 Climate Target on the way to climate neutrality – European Sources Online. https://www.europeansources.info/record/fit-for-55-delivering-the-eus-2030-climate-target-on-the-way-to-climate-neutrality/. 32. G. Rodanakis, “An examination of the degree of effective application of ship energy efficiency management plan by the Greek shipping companies through a benchmarking analysis,” thesis, University of Piraeus (2014). 33. A. Pavlidis, “Importance of synergy between regulators and the private sector to decarbonize shipping,” thesis, University of Piraeus (2024). 34. Z. Du, Q. Chen, C. Guan, H. Chen, Improvement and Optimization Configuration of Inland Ship Power and Propulsion System. J. Mar. Sci. Eng. 11, 135 (2023). 35. O. B. Inal, J.-F. Charpentier, C. Deniz, Hybrid power and propulsion systems for ships: Current status and future challenges. Renew. Sustain. Energy Rev. 156, 111965 (2022). 36. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review - Nguyen - 2021 - International Transactions on Electrical Energy Systems - Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/2050-7038.12580. 37. D.-H. Kim, A. B. Alayande, J.-M. Lee, J.-H. Jang, S.-M. Jo, M.-R. Jae, E. Yang, K.-J. Chae, Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal. Sci. Total Environ. 906, 167459 (2024). 38. C. Stark, Y. Xu, M. Zhang, Z. Yuan, L. Tao, W. Shi, Study on Applicability of Energy-Saving Devices to Hydrogen Fuel Cell-Powered Ships. J. Mar. Sci. Eng. 10, 388 (2022). 39. P. Sridhar, A. Kumar, S. Manivannan, S. Farooq, I. A. Karimi, Technoeconomic evaluation of post-combustion carbon capture technologies on-board a medium range tanker. Comput. Chem. Eng. 181, 108545 (2024). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/124236 |