Dominique, C-Rene (2009): Could Markets' Equilibrium Sets Be Fractal Attractors?
Preview |
PDF
MPRA_paper_13624.pdf Download (79kB) | Preview |
Abstract
The assumption that markets are positive linear structures moving toward stable fixed-point equilibria is not supproted by empirical investigations.This note reformulates the purest and the simplestof all Walrasian models, i. e.,a pure exchange economy, and shows that even such a simple market moves toward a compact time-invariant set of prices due to the constant destruction and creation of excess demands under the impulsion of self-interested agents with strong monotone preferences. Fractal attractors better explain continuous market fluctuations, 'black swans', and the flawed risk assessments of market risks of the financial engineers of Wall Street.
Item Type: | MPRA Paper |
---|---|
Original Title: | Could Markets' Equilibrium Sets Be Fractal Attractors? |
Language: | English |
Keywords: | Market Equilibria, Market Fluctuations, Black Swans, Risk Assessment |
Subjects: | D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D50 - General |
Item ID: | 13624 |
Depositing User: | C-Rene Dominique |
Date Deposited: | 26 Feb 2009 04:55 |
Last Modified: | 01 Oct 2019 05:31 |
References: | REFERENCES Arrow, K., J. and Debreu, G. (1954). “Existence of an Equilibrium for a Competitive Economy.” Econometrica, 22, 265-90. -----------------, Brock, D. H. and Hurwicz, L (1958). “On the Stability of Competitive Equilibrium I.” Econometrica, 27, 82-109. ---------------and Hurwicz, L. (1959). “On the Stability of Competitive Equilibrium II.” Econometrica, 26, 522-52. Brock, W. (1986). “Distinguishing Random and Deterministic Systems: Abridged Version. Journal of Econ. Theory, 40, 168-95. Cantor, G. (1883).”Grundlagen einer allegemein manichfaltigheitslehre.” Math. Annalen, 21, 545-91. Casti, J. L. (1994). Complexification. New York: Harper Perennial. Dominique, C-R. (2008a). “Walrasian Solutions Without Utility Functions. MPRA Paper no. 8759. University Library of Munich; see also Economics and Econometrics Institute Research Papers Series no. 10/2008. -----------------(2008b). “Behind the 2008 Capital Market Collapse.” The Economic and Econometrics Insti- tute Research Papers Series no. 17/2008. Frobenius, G. (1908). “ Uber Matrizen aus positiven Elementen.” Sitzungsberichte Konizl Preussichen Akad. Wiss.” 8, 471-76. Frank, M., Gencay, R, and Stengos, T. (1988a) “International Chaos.” European Economic Jour., 32, 1569-84. Grassberger, P. and Procaccia, I. (1983). “Measuring the Strangeness of Strange Attractors.” Physica, 9D, 189-208. Hausdorff, F. (1919). Dimension und ausseres.” Mathematische Annalen, 79, 157-79. Hurst, H. et al. (1951). Long Term Storage: An Experimental Study. London: Constable. Koch, H. von (1904). “Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire.” Arkiv for Matematik Astronomi och Fysik, 1, 681-704. Mandelbrot, B. (1983a). The Fractal Geometry of Nature. New York: W. H. Freeman. --------------- (1983b). “On Fractal Geometry and a Few of the Mathematical Questions It Has Raised.” Proceedings of the International Congress of Mathematicians. Warsaw: August, 1661-75. Marotto, F. R. (1979). “Snap-Back Repeller Implies Chaos in Rn ”, Jour. of Math. Analysis and Applications, 72, 199-223 Metzler, L. A. (1945). “Stability of Multiple Markets: The Hicks Conditions.” Econometrica, 13, 277-92. Mitchell, W. C. and Thorpe, W. L. (1926). Business Annals, New York: Nat. Bur. of Econ. Research. Peters, E. (1989). Fractal Structure in the Capital Market.” Financial Analyst Jour., July/August. -------------(1991). “A Chaotic Attractor for the S&P-500.” Financial Analyst Jour., March/April. Perron, O. (1907). Zur Theorie der Matrizen.” Math. Annalen, 64, 432-45. Walras, L (1883). Théorie mathématique de la richesse Sociale. Corbaz: Lausanne. ------------(1900). Eléments d’économie politique ou théorie de la production de la richesse sociale, 4th ed. Paris: Pichon. Copyright Ó 2008 by C-René Dominique. * |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/13624 |