Feng, Yuanhua and Beran, Jan and Yu, Keming (2006): Modelling financial time series with SEMIFAR-GARCH model.
Preview |
PDF
MPRA_paper_1593.pdf Download (274kB) | Preview |
Abstract
A class of semiparametric fractional autoregressive GARCH models (SEMIFAR-GARCH), which includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper discusses the model fitting, including an efficient algorithm and parameter estimation of GARCH error term. So that the model can be applied in practice. We then illustrate the model and estimation methods with a few of different finance data sets.
Item Type: | MPRA Paper |
---|---|
Institution: | Heriot-Watt University, University of Konstanz and Brunel University |
Original Title: | Modelling financial time series with SEMIFAR-GARCH model |
Language: | English |
Keywords: | Financial time series; GARCH model; SEMIFAR model; parameter estimation; kernel estimation; asymptotic property |
Subjects: | G - Financial Economics > G0 - General > G00 - General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General |
Item ID: | 1593 |
Depositing User: | Yuanhua Feng |
Date Deposited: | 30 Jan 2007 |
Last Modified: | 26 Sep 2019 22:34 |
References: | Bailie, R.T., Bollerslev, T, and Mikkelsen, H.O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econometrics, 74, 3-30. Bailie, R.T., Chung, C.F. and Tiles, M.A. (1995). Analyzing inflation by the fractionally integrated ARFIMAR-GARCH model. J. Appl. Econometrics, 11, 23--40. Beran, J. (1994). Statistics for long-memory processes. Chapman and Hall, New York. Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short- and long-memory ARIMA models. J. Roy. Statist. Soc. B, 57, 672-695. Beran, J., Bhansali, R.J., Ocker, D. (1998). On unified model selection for stationary and nonstationary short-and long-memory autoregressive processes. Biometrika, 85, 921--934. Beran, J. and Feng, Y. (2001). Local polynomial estimation with a FARIMA-GARCH error process. Bernoulli, 7, 733--750. Beran, J. and Feng, Y. (2002a). SEMIFAR models - A semiparametric framework for modelling trends, long-range dependence and nonstationarity. Computat. Statist. Data Anal., 40, 393--419. Beran, J. and Feng, Y. (2002b). Iterative plug-in algorithms for SEMIFAR models -definition, convergence and asymptotic properties. J. Computat. Graph. Statist., 11, 690--713. Bollerslev, T. (1986). Generalized Autoregressive Conditional Hetreoskedasticity. J. Econometrics, 31, 307-–327. Chen, M. and An, H.Z. (1998). A note on the stationarity and the existence of moments of the GARCH model. Statistica Sinica, 8, 505--510. Engel, R.F. (1982). Autoregressive conditional heteroskedasticity with estimation of U.K. inflation. Econometrica, 50, 987--1008. Engle, R.F., Lilien, D.M. and Robins, R.P. (1987). Estimating time-varying risk premia in the term structure: the ARCH-M model. Econometrica, 55, 391--407. Feng, Y. (2004). Non- and Semiparametric Regression with Fractional Time Series Errors - Theory and Applications to Financial Data. Habilitation Monograph, University of Konstanz. Giraitis, L., Leipus, R., Robinson, P.M. and Surgailis, D. (2004). LARCH, leverage, and long memory. J. Financ. Econometr., 2, 177--210. Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal, 1, 15—-30. He, C. and Teräsvirta, T. (1999a). Forth moment structure of the GARCH(p, q) process. Econometric Theory, 15, 824--846. He, C. and Teräsvirta, T. (1999b). properties of autocorrelation function of squared observations for second-order GARCH processes under two sets of parameter constrains. J. Time Ser. Anal, 20, 23--30. Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165--176. Hosking, J. R. M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series. J. Econometrics, 73, 261--284. Ling, S. and Li, W.K. (1997). On fractional integrated autoregressive moving-average time series models with conditional heteroskedasticity. J. Amer. Statist. Assoc., 92, 1184--1194. Ling, S. and McAleer, M. (2002). Necessary and sufficient moment conditions for the GARCH(r,s) and asymmetric power GARCH(r,s) models. Econometric Theory, 18, 722--729. Ling, S.-Q., Li, W.K. (1997). Fractional ARIMA-GARCH time series models. J. Amer. Statist. Assoc., 92, 1184--1194. Nelson, D.B. (1991). Conditional herteroskedasticity in Asset Returns: A new Approach. Econometrica, 59, 347--370. Robinson, P.M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J. Econometr., 47, 67–84. Ruppert, D. and Wand, M.P. (1994). Multivariate locally weighted least squares regression. Ann. Statist., 22, 1346--1370. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/1593 |