Logo
Munich Personal RePEc Archive

Optimal solution of the nearest correlation matrix problem by minimization of the maximum norm

Mishra, SK (2004): Optimal solution of the nearest correlation matrix problem by minimization of the maximum norm.

[thumbnail of MPRA_paper_1783.pdf]
Preview
PDF
MPRA_paper_1783.pdf

Download (262kB) | Preview

Abstract

The nearest correlation matrix problem is to find a valid (positive semidefinite) correlation matrix, R(m,m), that is nearest to a given invalid (negative semidefinite) or pseudo-correlation matrix, Q(m,m); m larger than 2. In the literature on this problem, 'nearest' is invariably defined in the sense of the least Frobenius norm. Research works of Rebonato and Jaeckel (1999), Higham (2002), Anjos et al. (2003), Grubisic and Pietersz (2004), Pietersz, and Groenen (2004), etc. use Frobenius norm explicitly or implicitly.

However, it is not necessary to define 'nearest' in this conventional sense. The thrust of this paper is to define 'nearest' in the sense of the least maximum norm (LMN) of the deviation matrix (R-Q), and to obtain R nearest to Q. The LMN provides the overall minimum range of deviation of the elements of R from those of Q.

We also append a computer program (source codes in FORTRAN) to find the LMN R from a given Q. Presently we use the random walk search method for optimization. However, we suggest that more efficient methods based on the Genetic algorithms may replace the random walk algorithm of optimization.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.