Roy Chowdhury, Prabal (2009): Free Entry Bertrand Competition.

PDF
MPRA_paper_17837.pdf Download (150kB)  Preview 
Abstract
This paper examines Bertrand competition under free entry, when firm size visavis market size is exogenously given. A free entry Bertrand Nash equilibrium (FEBE) exists if and only if relative market size is sufficiently large. Further, there is a unique coalitionproof Nash equilibrium price that corresponds to the minimum FEBE price, leads to average cost pricing for all active firms and is decreasing in market size.
Item Type:  MPRA Paper 

Original Title:  Free Entry Bertrand Competition 
Language:  English 
Keywords:  Bertrand competition; free entry; coalitionproof; contestability 
Subjects:  D  Microeconomics > D5  General Equilibrium and Disequilibrium L  Industrial Organization > L3  Nonprofit Organizations and Public Enterprise 
Item ID:  17837 
Depositing User:  Prabal Roy Chowdhury 
Date Deposited:  13. Oct 2009 16:03 
Last Modified:  08. Jan 2014 04:12 
References:  Baye, M.R. and D. Kovenock, 2008, Bertrand Competition, in The New Palgrave Dictionary of Economics. Second Edition. Eds. S.N. Durlauf and L.E. Blume. (Palgrave Macmillan). Baumol, W., E. Bailey and R. Willig, 1977, Weak indivisible hand theorems on the sustainability of prices in a Multiproduct monopoly, American Economic Review 67, 350367. Baumol, W., J. Panzar and R. Willig, 1982, Contestable Markets and the Theory of Industrial Structure. (Harcourt Brace Jovanovich, New York). Bernheim, B.D., B. Peleg and M.D. Whinston, 1987, Coalitionproof Nash equilibria. I: Applications, Journal of Economic Theory 42, 1322. Bernheim, W. and M.D. Whinston, 1987, Coalitionproof Nash equilibria. II: Concepts, Journal of Economic Theory 42, 112. Chamberlin, E.H., 1993, The Theory of Monopolistic Competition. (Harvard University Press: Cambridge, Massachusetts). Dastidar, K.G., 1995, On the existence of pure strategy Bertrand equilibrium, Economic Theory 5, 1932. Hoernig, S.H., 2002, Mixed Bertrand equilibria under decreasing returns to scale: an embarrassment of riches, Economics Letters 74, 359362. Hoernig, S.H., 2007, Bertrand games and sharing rule, Economic Theory 31, 573585. Novshek, W. and P. Roy Chowdhury, 2003, Bertrand equilibria with entry: limit results, International Journal of Industrial Organization 21, 795808. Ray Chaudhuri, P., 1996, The contestable outcome as a Bertrand equilibrium, Economics Letters 50, 237242. Roy Chowdhury, P. and K. Sengupta, 2004, Coalitionproof Bertrand equlibria, Economic Theory 24, 307324. Spulber, D., 1989, Regulation and Markets. (MIT Press: Cambridge, Mass.). Taha, H., 1982, Operations Research (Collier Macmillan: New York). Vives, X., 1999, Oligopoly pricing: Old ideas and new tools. (MIT Press: Cambridge, Massachusetts, London, England). 
URI:  https://mpra.ub.unimuenchen.de/id/eprint/17837 