Corchon, Luis and Ritzberger, Klaus (1992): On the Non-Cooperative Foundations of Cooperative Bargaining.
Preview |
PDF
MPRA_paper_18461.pdf Download (530kB) | Preview |
Abstract
In this note we challenge the non-cooperative foundations of cooperative bargaining solutions on the grounds that the limit operation for approaching a frictionless world is not robusto We show that when discounting almost ceases to play a role, any individually rational payoff can be supported by some subgame perfect equilibrium. To select the "correct" point imposes excessive informationaL requirements on the analyst.
Item Type: | MPRA Paper |
---|---|
Original Title: | On the Non-Cooperative Foundations of Cooperative Bargaining |
Language: | English |
Keywords: | Subgame Perfection Rubinstein Game |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C78 - Bargaining Theory ; Matching Theory C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C71 - Cooperative Games C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C72 - Noncooperative Games |
Item ID: | 18461 |
Depositing User: | Luis C. Corchon |
Date Deposited: | 08 Nov 2009 06:34 |
Last Modified: | 29 Sep 2019 08:54 |
References: | Asheim, G. R. (1992): "A Unique Solution to n-person Sequential Bargaining".Games and Economic Behavior vol. 4, n. 2, pp. 169-181. Binmore, K. G. (1987): "Perfect Equilibrium in Bargaining Models" in Binmore, K. G, & P. Dasgupta (eds.) The Economics of Bargaining, Basil Blackwell, Oxford. Binmore, K. G, & P. Dasgupta (eds.) (1987): The Economics of Bargaining, Basil Blackwell, Oxford. Binmore, K. G., A. Rubinstein & A. Wolinsky (1986): "The Nash Bargaining Solution in Economic Modeling". Rand JournaL of Economics, vol 17, pp. 176-188. Chae, S. & J. Yang (1988): "The Unique Perfect Equilibrium of an N-Person Bargaining Game" Economic Letters, vol. 28, pp. 221-223. Friedman, J.W. (1971): "A Non-Cooperative Equilibrium for Supergames". Review of Economic Studies, vol. 38 pp. 1-12. Fudenberg, D. & E. Maskin (1986): "The Folk Theorem in Repeated Games with Discounting or with Incomplete Information". Econometrica, vol. 54, pp. 533-554. Guillemin, V. and A. Pollack, "Differential Topology", Prentice-Hall, 1974. Güth, W, & K. Ritzberger (1992): "On Durable Monopolies and the (Anti- )Coase Conjecture", CentER Discussion Paper No. 9215. Herrero, M. (1985): "A Strategic Bargaining Approach to Market Institutions", Ph. D. thesis, London School of Economics. Hildenbrand, W. (1987): "Cores" in J. Eatwell, M. Milgate & P. Newman (eds.), The New Palgrave, volume on General Equilibrium. Muthoo, A. (1992): "Revocable Commitment and sequential Bargaining". Economic J oumal, vol. 102, pp. 378-387. Osborne, M. J. & A. Rubinstein (1990): Bargaining and Markets, Academic Press Inc., San Diego. Rubinstein, A. (1982): "Perfect Equilibrium in a Bargaining Model" Econometrica, vol. 50, pp. 97-109. Rubinstein, A. & A. Wolinsky (1985): "Equilibrium in a Market with Sequential Bargaining". Econometrica, vol. 53, pp. 1133-1150. Shaked, A. & J. Sutton (1984): "Involuntary unemployment as a Perfect Equilibrium in a Bargaining Model" Econometrica, vol. 52, pp. 1351-1364. Sjostrom, T. (1991): "StAhl's Bargaining Model". Economics Letters, vol. 36, pp. 153-157. St~hl, I. (1972): Bargaining Theory. Stockholm School of Economics, Stockholm. Sutton, J. (1986): "Non-Cooperative Bargaining Theory: An Introduction". Review of Economic Studies, vol. 53 pp. 709-724. Yang, J. (1992): "Another n-Person Bargaining Game with a Unique Perfect Equilibrium" Economic Letters, vol. 38 pp. 275-277. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/18461 |