Alfaro, Rodrigo and Becerra, Juan Sebastian and Sagner, Andres (2010): Estimación de la estructura de tasas utilizando el modelo Dinámico Nelson Siegel: resultados para Chile y EEUU.
Preview |
PDF
MPRA_paper_25912.pdf Download (275kB) | Preview |
Abstract
The model proposed by Nelson and Siegel (1987) has been used for several researcher to fit the yield curve. In this paper we propose a discrete-time version of that model by using dynamic factors, such that the model is dynamic in the sense proposed by Diebold and Li (2006). We found the exact parameters in the VAR model that generates Dynamic-Nelson-Siegel (DNS) which has a strong implication in the time-series properties of the interest rates: those should be model by an ARIMA(2,1,2). Finally we provide empirical evidence of the model for the cases of Chile and US, our finding matches previous results about the non-linear parameter of the model.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimación de la estructura de tasas utilizando el modelo Dinámico Nelson Siegel: resultados para Chile y EEUU |
English Title: | The Dynamic Nelson-Siegel model: empirical results for Chile and US |
Language: | Spanish |
Keywords: | Nelson-Siegel, Yield Curve, ARIMA |
Subjects: | E - Macroeconomics and Monetary Economics > E4 - Money and Interest Rates > E43 - Interest Rates: Determination, Term Structure, and Effects G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 25912 |
Depositing User: | Rodrigo Alfaro |
Date Deposited: | 17 Oct 2010 13:24 |
Last Modified: | 28 Sep 2019 16:29 |
References: | Alfaro, R. (2009) “La Curva de Rendimiento bajo Nelson-Siegel,” Documento de Trabajo N° 531, Banco Central de Chile. Campbell, J., A. Lo y A. MacKinlay (1997) The Econometrics of Financial Markets, Princeton University Press. Chan, K., G. Karolyi, F. Longstaff y A. Sanders (1992) “An Empirical Comparison of Alternative Models of the Short-Term Interest Rate” The Journal of Finance 47(3):1209-1227. Coroneo, L., K. Nyholm y Rositsa Vidova-Koleva (2008) “How arbitrage-free is the Nelson-Siegel Model?” Working Paper N° 874, European Central Bank. Cortázar, G., E. Schwartz y L. Naranjo (2007) “Term Structure Estimation in Markets with Infrequent Trading,” International Journal of Finance and Economics 12: 353-369. Cox, J., J. Ingersoll y S. Ross (1985) “A Theory of the Term Structure of Interest Rate,” Econometrica 53: 385-407. Diebold, F. y C. Li (2007) “Forecasting the Term Structure of Goverment Bond Yield,” Journal of Econometrics 130: 337-364. Diebold, F. y S. Sharpe (1990) “Post-desregulation Bank Deposit Rate Pricing: The Multivariate Dynamics,” Journal of Business and Economic Statistics 8: 281-293. Duffie, D. y R. Kan (1996) “A Yield-Factor Model of Interest Rates,” Mathematical Finance 6: 379-406. Fernández, V. (1999) “Estructura de Tasas de Interés en Chile: la Vía No-paramétrica,” Cuadernos de Economía 36(109): 1005-1034. Hall, A. D., H. M. Anderson y C. Granger (1992) “A Cointegration Analysis of Treasury Bill Yields,” Review of Economics and Statistics 74: 116-126. Heath, D., R. Jarrow y A. Morton (1992) “Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation,” Econometrica 60: 77-105. Herrera, L. y I. Magendzo (1997) “Expectativas Financieras y la Curva de Tasas Forward de Chile,” Documento de Trabajo N° 23, Banco Central de Chile. Ho, T. S. y S. Lee (1986) “Term Structure Movements and Pricing Interest Rate Contingent Claims,” Journal of Finance 41: 1011-1028. Hull, J. y A. White (1990) “Pricing Interest-Rate-Derivative Securities,” Review of Financial Studies 3: 573-592. Morales, M. (2008) “The Real Yield Curve and Macroeconomic Factors in the Chilean Economy,” Applied Economics 2008: 1-13. Nelson, C. y A. Siegel (1987) “Parsimonious Modeling of Yield Curve,” The Journal of Business 60(4): 473-489. Ochoa, J. (2006) “An Interpretation of an Affine Term Structure Model for Chile,” Estudios de Economía 33(2): 155-184. Pagan, A. R., A. Hall y V. Martin (1996) Modeling the Term Structure, Handbook of Statistics, North-Holland, Amsterdam. Parisi, F. (1998) “Tasa de Interés Nominal de Corto Plazo en Chile: Una Comparación Empírica de sus Modelos,” Cuadernos de Economía 35(105): 161-182. Vasicek, O. (1977) “An Equilibrium Characterization of the Term Structure,” Journal of Financial Economics 5: 177-188. Shea, G. S. (1992) “Benchmarking the Expectations Hypothesis of the Interest-Rate Term Structure: An Analysis of Cointegration Vectors,” Journal of Business and Economic Statistics 10: 347-366. Spiegel, M. y J. Liu (1999) Mathematical Handbook of Formulas and Tables, Segunda Edición, Schaum’s Outlines. Swanson N. R. y H. White (1995) “A Model-Selection Approach to Assesing the Information in the Term Structure Using Linear Models and Artificial Neuronal Networks,” Journal of Business and Economic Statistics 13: 265-275. Zuñiga, S. (1999) “Modelos de Tasas de Interés en Chile: Una Revisión,” Cuadernos de Economía 36(108): 875-893. Zúñiga, S. y K. Soria (1999). “Estimación de la Estructura Temporal de Tasas de Interés en Chile, 1994-1997” Estudios de Administración 6(1): 25-50. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/25912 |