Li, Jing and Xu, Mingxin (2009): Minimizing Conditional Value-at-Risk under Constraint on Expected Value.
Preview |
PDF
MPRA_paper_26342.pdf Download (312kB) | Preview |
Abstract
Conditional Value-at-Risk (CVaR) measures the expected loss amount beyond VaR. It has vast advantage over VaR because of its property of coherence. This paper gives an analytical solution in a complete market setting to the risk reward problem faced by a portfolio manager whose portfolio needs to be continuously rebalanced to minimize risk taken (measured by CVaR) while meeting the reward goal (measured by expected return). The optimal portfolio is identified whenever it exists, and the associated minimal risk is calculated. An example in the Black-Scholes framework is cited where dynamic hedging strategy is calculated and the efficient frontier is plotted.
Item Type: | MPRA Paper |
---|---|
Original Title: | Minimizing Conditional Value-at-Risk under Constraint on Expected Value |
Language: | English |
Keywords: | Conditional Value-at-Risk, Portfolio optimization, Risk minimization, Neyman-Pearson problem |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G3 - Corporate Finance and Governance > G32 - Financing Policy ; Financial Risk and Risk Management ; Capital and Ownership Structure ; Value of Firms ; Goodwill C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 26342 |
Depositing User: | Mingxin Xu |
Date Deposited: | 03 Nov 2010 09:10 |
Last Modified: | 28 Sep 2019 18:48 |
References: | \bibitem{AcerbiTasche}{{\sc Acerbi, C., D. Tasche (2002)}: ``On the coherence of expected shortfall", {\em Journal of Banking and Finance}, {\bf 26}, 1487--1503.} \bibitem{AcerbiSimonetti}{{\sc Acerbi, C., P. Simonetti (2002)}: ``Portfolio Optimization with Spectral Measures of Risk", {\em Working Paper}, Abaxbank.} \bibitem{ArtznerDelbaenEberHeath1}{{\sc Artzner, P., F. Delbaen, J.-M. Eber, D. Heath (1997)}: ``Thinking coherently", {\em Risk}, {\bf 10}, 68--71.} \bibitem{ArtznerDelbaenEberHeath2}{{\sc Artzner, P., F. Delbaen, J.-M. Eber, D. Heath (1999)}: ``Coherent measures of risk", {\em Mathematical Finance}, {\bf 9}, 203--228.} \bibitem{BenatiRizzi}{{\sc Benati, S., R. Rizzi (2007)}: ``A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem'', {\em European Journal of Operational Research}, {\bf 176}, 423--434.} \bibitem{BieleckiJinPliskaZhou}{{\sc Bielecki, T., H. Jin, S. R. Pliska, X. Y. Zhou (2005)}: ``Continuous-time mean-variance portfolio selection with bankruptcy prohibition'', {\em Mathematical Finance}, {\bf 15}, 213--244.} \bibitem{CampbellHuismanKoedijk}{{\sc Campbell, R., R. Huisman, K. Koedijk (2001)}: ``Optimal portfolio selection in a Value-at-Risk framework'', {\em Journal of Banking \& Finance}, {\bf 25}, 1789--1804.} \bibitem{Cherny}{{\sc Cherny, A. S. (2006)}: ``Weighted V@R and its properties'', {\em Finance and Stochastics}, {\bf 10}, 367--393.} \bibitem{Consigli}{{Consigli, G. (2002)}: ``Tail estimation and mean-VaR portfolio selection in markets subject to financial instability'', {\em Journal of Banking \& Finance}, {\bf 26}, 1355--1382.} \bibitem{DelbaenSchachermayer1}{{\sc Delbaen, F., W. Schachermayer (1994)}: ``A general version of the fundamental theorem of asset pricing'', {\em Mathematische Annalen}, {\bf 300}, 463--520. } \bibitem{Danielsson}{{\sc Danielson, J., P. Embrechts, C. Goodhart, F. Muennich, H. S. Shin (2001)}: ``An Academic Response to Basel II'', {\em Financial Markets Group Special Paper No. 130}, London School of Economics. } \bibitem{FollmerKabanov}{{\sc F\"{o}llmer, H., Y. M. Kabanov (1998)}: ``Optional decomposition and Lagrange multipliers'', {\em Finance and Stochastics}, {\bf 2}, 69--81.} \bibitem{FollmerLeukert}{{\sc F\"{o}llmer, H., P. Leukert (2000)}: ``Efficient hedging: cost versus shortfall risk'', {\em Finance and Stochastics}, {\bf 4}, 117--146.} \bibitem{FollmerSchied}{{\sc F\"{o}llmer, H., A. Schied (2002)}: {\em Stochastic finance - an introduction in discrete time,} Walter de Gruyter, Berlin, Germany, Studies in Mathematics, {\bf 27}.} \bibitem{GaivoronskiPflug}{{\sc Gaivoronski, A., G. Pflug (2005)}: ``Value at risk in portfolio optimization: properties and computational approach'', {\em Journal of Risk}, {\bf 7(2)}, 1--31.} \bibitem{Gandy}{{\sc Gandy, R. (2005)}: ``Portfolio Optimization with Risk Constraints", PhD Thesis, University of Ulm.} \bibitem{GoldfarbIyengar}{{\sc Goldfarb, D., G. Iyengar (2003)}: ``Robust portfolio selection problems'', {\em Mathematics of Operations Research}, {\bf 28(1)}, 1--38.} \bibitem{KondorPafkaNagy}{{\sc Kondor, I., S. Pafka, G. Nagy (2007)}: ``Noise sensitivity of portfolio selection under various risk measures'', {\em Journal of Banking \& Finance}, {\bf 31}, 1545--1573.} \bibitem{Kramkov}{{\sc Kramkov, D. (1996)}: ``Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets'', {\em Probability Theory and Related Fields}, {\bf 105}, 459--479.} \bibitem{LiXuA}{{\sc Li, J., M. Xu (2008)}: ``Risk minimizing portfolio optimization and hedging with conditional Value-at-Risk", {\em Review of Futures Markets}, {\bf 16}, 471--506.} \bibitem{Markowitz}{{\sc Markowitz, H. (1952)}: ``Portfolio Selection", {\em The Journal of Finance}, {\bf 7(1)}, 77--91.} \bibitem{Morgan}{{\sc Morgan Guaranty Trust Company (1994)}: ``RiskMetrics - Technical Document", {\em Morgan Guaranty Trust Company, Global Research, New York.}} \bibitem{RockafellarUryasevA}{{\sc Rockafellar, R. T., S. Uryasev (2000)}: ``Optimization of Conditional Value-at-Risk'', {\em The Journal of Risk}, {\bf 2}, 21--51.} \bibitem{RockafellarUryasevB}{{\sc Rockafellar, R. T., S. Uryasev (2002)}: ``Conditional value-at-risk for general loss distributions'', {\em Journal of Banking \& Finance}, {\bf 26}, 1443--1471.} \bibitem{Rudloff}{{Rudloff, B. (2007)}: ``Convex hedging in incomplete markets'', {\em Applied Mathematical Finance}, {\bf 14}, 437--452.} \bibitem{RuszczynskiShapiro}{{\sc Ruszczy\'{n}ski, A., A. Shapiro (2006)}: ``Conditional risk mapping," {\em Mathematics of Operations Research}, {\bf 31(3)}, 544--561.} \bibitem{Schied}{{\sc Schied, A. (2004)}: ``On the Neyman-Pearson problem for law-invariant risk measures and robust utility functionals", {\em The Annals of Applied Probability}, {\bf 14(3)}, 1398--1423.} \bibitem{Sekine}{{Sekine, J. (2004)}: ``Dynamic minimization of worst conditional expectation of shortfall'', {\em Mathematical Finance}, {\bf 14}, 605--618.} \bibitem{Xu}{{\sc Xu, M. (2004)}: ``Minimizing shortfall risk using duality approach - an application to partial hedging in incomplete markets'', {\em Ph.D. thesis}, Carnegie Mellon University.} \bibitem{Zheng}{{\sc Zheng, H. (2009)}: ``Efficient frontier of utility and CVaR'', {\em Mathematical Methods of Operations Research}, {\bf 70}, 129--148.} |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/26342 |