Munich Personal RePEc Archive

Modeling hierarchical relationships in epidemiological studies: a Bayesian networks approach

Nguefack-Tsague, Georges and Zucchini, Walter (2011): Modeling hierarchical relationships in epidemiological studies: a Bayesian networks approach.

[thumbnail of MPRA_paper_28232.pdf]

Download (404kB) | Preview


Hierarchical relationships between risk factors are seldom taken into account in epidemiological studies though some authors stressed the importance of doing so, and proposed a conceptual framework in which each level of the hierarchy is modeled separately. The objective of this paper was to implement a simple version of their framework, and to propose an alternative procedure based on a Bayesian Network (BN). These approaches were illustrated in modeling the risk of diarrhea infection for 2740 children aged 0 to 59 months in Cameroon. The authors implemented a (naïve) logistic regression, a step-level logistic regression and also a BN. While the first approach is inadequate, the two others approaches both account for the hierarchical structure but to different estimates and interpretations. BN implementation showed that a child in a family in the poorest group has respectively 89%, 40% and 18% probabilities of having poor sanitation, being malnourished and having diarrhea. An advantage of the latter approach is that it enables one to determine the probability that a risk factor (and/or the outcome) is in a given state, given the states of the others. Although the BN considered here is very simple, the method can deal with more complicated models.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.