Wu, Haoyang (2011): Two-agent Nash implementation: A new result.
Preview |
PDF
MPRA_paper_30068.pdf Download (497kB) | Preview |
Abstract
[Moore and Repullo, \emph{Econometrica} \textbf{58} (1990) 1083-1099] and [Dutta and Sen, \emph{Rev. Econom. Stud.} \textbf{58} (1991) 121-128] are two fundamental papers on two-agent Nash implementation. Both of them are based on Maskin's classic paper [Maskin, \emph{Rev. Econom. Stud.} \textbf{66} (1999) 23-38]. A recent work [Wu, http://arxiv.org/abs/1002.4294, \emph{Inter. J. Quantum Information}, 2010 (accepted)] shows that when an additional condition is satisfied, the Maskin's theorem will no longer hold by using a quantum mechanism. Furthermore, this result holds in the macro world by using an algorithmic mechanism. In this paper, we will investigate two-agent Nash implementation by virtue of the algorithmic mechanism. The main result is: The sufficient and necessary conditions for Nash implementation with two agents shall be amended, not only in the quantum world, but also in the macro world.
Item Type: | MPRA Paper |
---|---|
Original Title: | Two-agent Nash implementation: A new result |
Language: | English |
Keywords: | Quantum game theory; Mechanism design; Nash implementation. |
Subjects: | D - Microeconomics > D7 - Analysis of Collective Decision-Making > D71 - Social Choice ; Clubs ; Committees ; Associations |
Item ID: | 30068 |
Depositing User: | Haoyang Wu |
Date Deposited: | 09 Apr 2011 00:14 |
Last Modified: | 04 Oct 2019 16:21 |
References: | 1. E. Maskin, Nash equilibrium and welfare optimality, \emph{Rev. Econom. Stud.} \textbf{66} (1999) 23-38. 2. J. Moore and R. Repullo, Nash implementation: a full characterization, \emph{Econometrica} \textbf{58} (1990) 1083-1099. 3. B. Dutta and A. Sen, A necessary and sufficient condition for two-person Nash implementation, \emph{Rev. Econom. Stud.} \textbf{58} (1991) 121-128. 4. F. Busutto and G. Codognato, Reconsidering two-agent Nash implementation, \emph{Social Choice and Welfare} \textbf{32} (2009) 171-179. 5. H. Wu, Quantum mechanism helps agents combat ``bad'' social choice rules. \emph{International Journal of Quantum Information}, 2010 (accepted). http://arxiv.org/abs/1002.4294 6. H. Wu, On amending the sufficient conditions for Nash implementation. \emph{Theoretical Computer Science}, 2011 (submitted). http://arxiv.org/abs/1004.5327 7. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J.L. O'Brien, Quantum computers, \emph{Nature}, \textbf{464} (2010) 45-53. 8. A.P. Flitney and L.C.L. Hollenberg, Nash equilibria in quantum games with generalized two-parameter strategies, \emph{Phys. Lett. A} \textbf{363} (2007) 381-388. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/30068 |