Logo
Munich Personal RePEc Archive

Voting rules as statistical estimators

Pivato, Marcus (2011): Voting rules as statistical estimators.

[thumbnail of MPRA_paper_30292.pdf]
Preview
PDF
MPRA_paper_30292.pdf

Download (369kB) | Preview

Abstract

We adopt an `epistemic' interpretation of social decisions: there is an objectively correct choice, each voter receives a `noisy signal' of the correct choice, and the social objective is to aggregate these signals to make the best possible guess about the correct choice. One epistemic method is to fix a probability model and compute the maximum likelihood estimator (MLE), maximum a posteriori estimator (MAP) or expected utility maximizer (EUM), given the data provided by the voters. We first show that an abstract voting rule can be interpreted as MLE or MAP if and only if it is a scoring rule. We then specialize to the case of distance-based voting rules, in particular, the use of the median rule in judgement aggregation. Finally, we show how several common `quasiutilitarian' voting rules can be interpreted as EUM.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.