Logo
Munich Personal RePEc Archive

The Variance Profile

Luati, Alessandra and Proietti, Tommaso and Reale, Marco (2011): The Variance Profile.

[thumbnail of MPRA_paper_30378.pdf]
Preview
PDF
MPRA_paper_30378.pdf

Download (512kB) | Preview

Abstract

The variance profile is defined as the power mean of the spectral density function of a stationary stochastic process. It is a continuous and non-decreasing function of the power parameter, p, which returns the minimum of the spectrum (p → −∞), the interpolation error variance (harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the unconditional variance (arithmetic mean, p = 1) and the maximum of the spectrum (p → ∞). The variance profile provides a useful characterisation of a stochastic processes; we focus in particular on the class of fractionally integrated processes. Moreover, it enables a direct and immediate derivation of the Szego-Kolmogorov formula and the interpolation error variance formula. The paper proposes a non-parametric estimator of the variance profile based on the power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic normality. From the empirical standpoint, we propose and illustrate the use of the variance profile for estimating the long memory parameter in climatological and financial time series and for assessing structural change.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.