Köksal, Bülent (2009): A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns. Published in: Journal of Economic and Social Research , Vol. 2, No. 11 (2009): pp. 1-29.
Preview |
PDF
MPRA_paper_30510.pdf Download (308kB) | Preview |
Abstract
We compare more than 1000 different volatility models in terms of their fit to the historical ISE-100 Index data and their forecasting performance of the conditional variance in an out-of-sample setting. Exponential GARCH model of Nelson (1991) with “constant mean, t-distribution, one lag moving average term” specification achieves the best overall performance for modeling the ISE-100 return volatility. The t-distribution seems to characterize the distribution of the heavy tailed returns better than the Gaussian distribution or the generalized error distribution. In terms of forecasting performance, the best models are the ones that can accommodate a leverage effect. Results from fitting the selected exponential GARCH model to the historical ISE-100 return data indicates that the return volatility reacts to bad news 24% more than they react to good news as a result of a one standard deviation shock to the returns. As the magnitude of shock increases, the asymmetry becomes larger.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns |
Language: | English |
Keywords: | GARCH; Volatility Models; Istanbul Stock Exchange; ISE-100 |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection G - Financial Economics > G1 - General Financial Markets > G10 - General |
Item ID: | 30510 |
Depositing User: | Bulent Koksal |
Date Deposited: | 17 Sep 2013 22:44 |
Last Modified: | 27 Sep 2019 03:18 |
References: | Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2003) Parametric and Nonparametric Volatility Measurement. IN Ait-Sahalia, Y. & Hansen, L. P. (Eds.) Handbook of Financial Econometrics. Amsterdam, Elsevier-North Holland. Bollerslev, T. (1986) "Generalized Autoregressive Conditional Heteroskedasticity." Journal of Econometrics 31: 307-27. Bollerslev, T. (2008) Glossary to Arch (Garch). School of Economics and Management, University of Aarhus. Bollerslev, T., Engle, R. F. & Nelson, D. B. (1994) "Arch Models," IN Engle, R. F. & McFadden, D. L. (Eds.), Handbook of Econometrics. Volume 4: 2959-3038 London and New York, Elsevier North-Holland. Ding, Z., Granger, C. W. J. & Engle, R. F. (1993) "A Long Memory Property of Stock Market Returns and a New Model." Journal of Empirical Finance 1: 83-106. Doornik, J. A. (2007) Object-Oriented Matrix Programming Using Ox. London, Timberlake Consultants Press and Oxford: www.doornik.com. Engle, R. F. (1982) "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica 50: 987-1007. Engle, R. F. (1990) "Stock Volatility and the Crash of '87: Discussion." Review of Financial Studies 3: 103-06. Engle, R. F. & Bollerslev, T. (1986) "Modelling the Persistence of Conditional Variances." Econometric Reviews 5: 1-50. Engle, R. F., Lilien, D. M. & Robins, R. P. (1987) "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model." Econometrica 55: 391-407. Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993) "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks." Journal of Finance 48: 1779-1801. Hansen, P. R. (2005) "A Test for Superior Predictive Ability." Journal of Business and Economic Statistics 23: 365-80. Hansen, P. R. & Lunde, A. (2005) "A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)?" Journal of Applied Econometrics 20: 873-889. Higgins, M. L. & Bera, A. K. (1992) "A Class of Nonlinear Arch Models." International Economic Review 33: 137-58. Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2003) Parametric and Nonparametric Volatility Measurement. IN Ait-Sahalia, Y. & Hansen, L. P. (Eds.) Handbook of Financial Econometrics. Amsterdam, Elsevier-North Holland. Bollerslev, T. (1986) "Generalized Autoregressive Conditional Heteroskedasticity." Journal of Econometrics 31: 307-27. Bollerslev, T. (2008) Glossary to Arch (Garch). School of Economics and Management, University of Aarhus. Bollerslev, T., Engle, R. F. & Nelson, D. B. (1994) "Arch Models," IN Engle, R. F. & McFadden, D. L. (Eds.), Handbook of Econometrics. Volume 4: 2959-3038 London and New York, Elsevier North-Holland. Ding, Z., Granger, C. W. J. & Engle, R. F. (1993) "A Long Memory Property of Stock Market Returns and a New Model." Journal of Empirical Finance 1: 83-106. Doornik, J. A. (2007) Object-Oriented Matrix Programming Using Ox. London, Timberlake Consultants Press and Oxford: www.doornik.com. Engle, R. F. (1982) "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation." Econometrica 50: 987-1007. Engle, R. F. (1990) "Stock Volatility and the Crash of '87: Discussion." Review of Financial Studies 3: 103-06. Engle, R. F. & Bollerslev, T. (1986) "Modelling the Persistence of Conditional Variances." Econometric Reviews 5: 1-50. Engle, R. F., Lilien, D. M. & Robins, R. P. (1987) "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model." Econometrica 55: 391-407. Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993) "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks." Journal of Finance 48: 1779-1801. Hansen, P. R. (2005) "A Test for Superior Predictive Ability." Journal of Business and Economic Statistics 23: 365-80. Hansen, P. R. & Lunde, A. (2005) "A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)?" Journal of Applied Econometrics 20: 873-889. Higgins, M. L. & Bera, A. K. (1992) "A Class of Nonlinear Arch Models." International Economic Review 33: 137-58. Köksal, B. (2009) "The Affects of Partisan Politics and Political Events on the Turkish Stock Market." Working Paper, Fatih University. Nelson, D. B. (1990) "Stationarity and Persistence in the Garch(1,1) Model." Econometric Theory 6: 318-34. Nelson, D. B. (1991) "Conditional Heteroskedasticity in Asset Returns: A New Approach." Econometrica 59: 347-70. Ozatay, F. & Sak, G. (2002) "Banking Sector Fragility and Turkey’s 2000-01 Financial Crisis," IN Collins, S. M. & Rodrik, D. (Eds.), Brookings Trade Forum 2002: 121-172 Washington DC, Brookings Institution Press. Poon, S.-H. & Granger, C. W. J. (2003) "Forecasting Volatility in Financial Markets: A Review." Journal of Economic Literature 41: 478-539. Schwert, G. W. (1989) "Why Does Stock Market Volatility Change over Time?" Journal of Finance 44: 1115-53. Taylor, S. J. (1986) Modelling Financial Time Series. New York, John Wiley & Sons. Turhan, M. I. (2008) "Why Did It Work This Time?: A Comparative Analysis of Transformation of Turkish Economy after 2002." Asian-African Journal of Economics and Econometrics 8: 255-280. Zakoian, J.-M. (1994) "Threshold Heteroskedastic Models." Journal of Economic Dynamics and Control 18: 931-55. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/30510 |