González-Val, Rafael (2011): A nonparametric estimation of the local Zipf exponent for all US Cities.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_32222.pdf Download (1MB) | Preview |
Abstract
In this paper we apply the methodology proposed by Ioannides and Overman (2003) to estimate a local Zipf exponent using data for the entire twentieth century of the complete distribution of cities (incorporated places) without any size restrictions in the US. First, we run kernel regressions using the Nadaraya–Watson estimator, excluding some atypical observations (5.66% of the sample). The results reject Zipf’s Law from a long-term perspective, but the evidence supports Gibrat’s Law. In the short term, decade by decade, the evidence in favour of Zipf’s Law is stronger. Second, to consider the whole sample we apply the LOcally WEighted Scatter plot Smoothing (LOWESS) algorithm. From a long-term perspective the evidence supporting Zipf’s Law increases, but the evidence supporting Gibrat Law’s is weaker, as small cities exhibit higher variance than the rest of the cities. Finally, the estimated values by decade are again closer to Zipf’s Law.
Item Type: | MPRA Paper |
---|---|
Original Title: | A nonparametric estimation of the local Zipf exponent for all US Cities |
Language: | English |
Keywords: | Zipf’s Law; Gibrat’s Law; urban growth |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R0 - General > R00 - General |
Item ID: | 32222 |
Depositing User: | Rafael González-Val |
Date Deposited: | 13 Jul 2011 18:39 |
Last Modified: | 29 Sep 2019 07:53 |
References: | Black D, Henderson V, 2003, “Urban evolution in the USA” Journal of Economic Geography 3(4) 343 – 372 Cheshire P, 1999, “Trends in sizes and structure of urban areas”, in Handbook of Regional and Urban Economics, Vol. 3, Eds P Cheshire and E S Mills (Elsevier, Amsterdam) Chap. 35, pp 1339 – 1373 Cleveland W S, 1979, “Robust locally weighted regression and smoothing scatterplots” Journal of the American Statistical Association 74 829 – 836 Córdoba J C, 2008, “A generalized Gibrat’s law” International Economic Review 49(4) 1463 – 1468 Duranton G, 2007, “Urban evolutions: the fast, the slow, and the still” American Economic Review 97(1) 197 – 221 Eeckhout J, 2004, “Gibrat’s law for (all) cities” American Economic Review 94(5) 1429 – 1451 Eeckhout J, 2009, “Gibrat’s law for (all) cities: reply” American Economic Review 99(4) 1676 – 1683 Gabaix X, 1999, “Zipf’s Law for cities: an explanation” Quarterly Journal of Economics 114(3) 739 – 767 Gabaix X, Ibragimov R, 2007, “Rank-1/2: a simple way to improve OLS estimation of tail exponents”, NBER Technical Working Paper, vol. 342 Gabaix X, Ioannides Y M, 2004, “The evolution of city size distributions” in Handbook of Urban and Regional Economics, Vol. 4, Eds J V Henderson, J F Thisse (Elsevier, Amsterdam) pp 2341 – 2378 Gibrat R, 1931 Les Inégalités Économiques (Librairie du Recueil Sirey, Paris) Giesen K, Südekum J, 2011, “Zipf’s Law for cities in the regions and the country” Journal of Economic Geography 11(4) 667 – 686 Giesen K, Zimmermann A, Suedekum J, 2010, “The size distribution across all cities – double Pareto lognormal strikes” Journal of Urban Economics 68 129 – 137 Goldstein M L, Morris S A, Yen G G, 2004, “Problems with fitting to the power-law distribution” The European Physical Journal B – Condensed Matter 41(2) 255 – 258 González-Val R, 2010, “The evolution of the US city size distribution from a long-run perspective (1900–2000)” Journal of Regional Science 50(5) 952 – 972 González-Val R, Sanso-Navarro M, 2010, “Gibrat’s law for countries” Journal of Population Economics 23(4) 1371 – 1389 Härdle W, 1990 Applied Nonparametric Regression (Cambridge Univ. Press, Cambridge) Ioannides Y M, Overman H G, 2003, “Zipf’s Law for cities: an empirical examination” Regional Science and Urban Economics 33 127 – 137 Levy M, 2009, “Gibrat’s Law for (all) cities: a comment” American Economic Review 99(4) 1672 – 1675 Malevergne Y, Pisarenko V, Sornette D, 2011, “Gibrat’s Law for cities: uniformly most powerful unbiased test of the Pareto against the lognormal” In press in Physical Review E. arXiv:0909.1281v1 [physics.data-an] Malevergne Y, Saichev A, Sornette D, 2010, “Zipf’s Law and maximum sustainable growth” arXiv:1012.0199v1 [physics.soc-ph] Nishiyama Y, Osada S, Sato Y, 2008, “OLS estimation and the t test revisited in rank-size rule regression” Journal of Regional Science 48(4) 691 – 715 Overman H G, Ioannides Y M, 2001, “Cross-sectional evolution of the U.S. city size distribution” Journal of Urban Economics 49 543 – 566 Rossi-Hansberg E, Wright M L J, 2007, “Urban structure and growth” Review of Economic Studies 74 597 – 624 Soo K T, 2005, “Zipf’s Law for cities: a cross-country investigation” Regional Science and Urban Economics 35: 239 – 263 Zipf G, 1949 Human Behaviour and the Principle of Least Effort (Addison-Wesley, Cambridge, MA) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/32222 |
Available Versions of this Item
-
A Nonparametric Estimation of the Local Zipf Exponent for all US Cities. (deposited 16 Nov 2010 05:49)
- A nonparametric estimation of the local Zipf exponent for all US Cities. (deposited 13 Jul 2011 18:39) [Currently Displayed]