George, Halkos and Ilias, Kevork (2004): H ασυμπτωτική διακύμανση στην εκτίμηση του στάσιμου μέσου υπό συνθήκες αυτοσυσχέτισης.
Preview |
PDF
MPRA_paper_33324.pdf Download (287kB) | Preview |
Abstract
In this study, using Monte Carlo simulations, we evaluate three alternative methods for constructing confidence intervals for the population mean in the case of a stationary first order autoregressive process, AR(1), with parameter ф. Differentiating the three methodologies with respect to the way of estimating the asymptotic variance, we infer that in constructing confidence intervals we have to avoid the use of the observations of the time series under consideration for the estimation of the autovariance and the autocorrelation coefficients. Instead, it is preferable to identify the series according to Box-Jenkins and then use the asymptotic variance derived from the corresponding ARMA model after the substitution of the OLS parameter and error variance estimates. It is worth mentioning that using the asymptotic variance, for small samples and in the case of an AR(1) with positive ф values, the expected actual confidence levels are larger as compared to the corresponding nominal ones, indicating a potential area for future research.
Item Type: | MPRA Paper |
---|---|
Original Title: | H ασυμπτωτική διακύμανση στην εκτίμηση του στάσιμου μέσου υπό συνθήκες αυτοσυσχέτισης |
English Title: | Using the asymptotic variance to estimate the stationary mean under autocorrelation |
Language: | Greek |
Keywords: | Ασυμπτωτική διακύμανση δειγματικού μέσου; διαστήματα εμπιστοσύνης; αυτοπαλίνδρομο σχήμα πρώτου βαθμού AR(1) |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C50 - General |
Item ID: | 33324 |
Depositing User: | G.E. Halkos |
Date Deposited: | 11 Sep 2011 16:14 |
Last Modified: | 26 Sep 2019 15:28 |
References: | Box, G.E.P., and G.M. Jenkins, (1976). Time Series Analysis: Forecasting and Control, Revised Edition, Holden-Day, San Francisco. Box, G.E.P., and M.E. Muller (1958). A Note on the Generation of Random Normal Deviates. Ann. Math. Statist. Vol 29, p.p. 610-611 Brockwell, P.J., and R.A. Davis, (2002). Introduction to Time Series and Forecasting. Second Edition. Springer Crane, M.A., and D.L. Iglehart, (1974a). Simulating stable stochastic systems, I: General multi-server queues. Journal of the Association for Computing Machinery, Vol. 21, pp.103-113. Crane, M.A., and D.L. Iglehart, (1974b). Simulating stable stochastic systems, II: Markov chains. Journal of the Association for Computing Machinery, Vol. 21, pp.114-123. Crane, M.A., and D.L. Iglehart, (1974c) Simulating stable stochastic systems, III: Regenerative processes and discrete event simulations. Operations Research, Vol. 23, pp.33-45. Crane, M.A., and D.L. Iglehart, (1975). Simulating stable stochastic systems, IV: Approximation techniques. Management Science, Vol. 21, pp.1215-1224. Ducket, S.D., and A.A.B. Pritsker, (1978). Examination of simulation output using spectral methods. Mathematical Computing Simulation, Vol. 20, pp. 53-60. Fishman, G.S., (1973a). Statistical analysis for queuing simulations. Management Science, Vol. 20, pp. 363-369. Fishman, G.S., (1973b). Concepts and methods in discrete event digital simulation. John Wiley and Sons, New York. Fishman, G., (1978). Principles of Discrete Event Simulation. Wiley, New York. Fishman, G., (1999). Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York. Halkos G.E., Kevork I.S. (2003). A comparison of alternative unit root tests. Discussion Papers Series 0302, Department of Economics University of Thessaly Halkos G.E., Kevork I.S. (2004). Confidence intervals in stationary autocorrelated time series. Forthcoming in Archieves of Economic History Heidelberger, P., and P.D. Welch, (1981a). A spectral method for confidence interval generation and run length control in simulations. Communications of the Association for Computing Machinery, Vol. 24, pp. 233-245. Heidelberger, P., and P.D. Welch, (1981b). Adaptive spectral methods for simulation output analysis. IBM Journal of Research and Development, Vol. 25, pp. 860-876. Kevork, I.S, (1990). Confidence Interval Methods for Discrete Event Computer Simulation: Theoretical Properties and Practical Recommendations. Unpublished Ph.D. Thesis, University of London, London Law, A.M., and W.D. Kelton, (1982a). Confidence interval for steady state simulations: II. A survey of sequential procedures. Management Science, Vol. 28, pp. 560-562. Law, A.M., and W.D. Kelton, (1982b). Simulation modelling and analysis. McGraw Hill, New York. Law, A.M., and W.D. Kelton, (1984). Confidence intervals for steady state simulations: I. A survey of fixed sample size procedures. Operation Research, Vol. 32, pp. 1221-1239. Law, A. and Kelton, W., (1991). Simulation Modeling and Analysis, second ed. McGraw-Hill, New York. Schruben, L., (1983). Confidence interval estimation using standardized time series. Operations Research 31, 1090-1108. Song, W.T. and Schmeiser, B.W., (1995). Optimal mean-squared-error batch sizes. Management Science 41, 111-123. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/33324 |