Logo
Munich Personal RePEc Archive

Local likelihood estimation of truncated regression and its partial derivatives: theory and application

Park, Byeong and Simar, Leopold and Zelenyuk, Valentin (2006): Local likelihood estimation of truncated regression and its partial derivatives: theory and application. Published in: Journal of Econometrics , Vol. 1, No. 146 (2008): pp. 185-198.

[thumbnail of MPRA_paper_34686.pdf]
Preview
PDF
MPRA_paper_34686.pdf

Download (399kB) | Preview

Abstract

In this paper we propose a very flexible estimator in the context of truncated regression that does not require parametric assumptions. To do this, we adapt the theory of local maximum likelihood estimation. We provide the asymptotic results and illustrate the performance of our estimator on simulated and real data sets. Our estimator performs as good as the fully parametric estimator when the assumptions for the latter hold, but as expected, much better when they do not (provided that the curse of dimensionality problem is not the issue). Overall, our estimator exhibits a fair degree of robustness to various deviations from linearity in the regression equation and also to deviations from the specification of the error term. So the approach shall prove to be very useful in practical applications, where the parametric form of the regression or of the distribution is rarely known.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.