Logo
Munich Personal RePEc Archive

An automatic procedure for the estimation of the tail index

Gimeno, Ricardo and Gonzalez, Clara I. (2012): An automatic procedure for the estimation of the tail index.

[thumbnail of MPRA_paper_37023.pdf]
Preview
PDF
MPRA_paper_37023.pdf

Download (188kB) | Preview

Abstract

Extreme Value Theory is increasingly used in the modelling of financial time series. The non-normality of stock returns leads to the search for alternative distributions that allows skewness and leptokurtic behavior. One of the most used distributions is the Pareto Distribution because it allows non-normal behaviour, which requires the estimation of a tail index.

This paper provides a new method for estimating the tail index. We propose an automatic procedure based on the computation of successive normality tests over the whole of the distribution in order to estimate a Gaussian Distribution for the central returns and two Pareto distributions for the tails. We find that the method proposed is an automatic procedure that can be computed without need of an external agent to take the decision, so it is clearly objective.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.