Gimeno, Ricardo and Gonzalez, Clara I. (2012): An automatic procedure for the estimation of the tail index.
Preview |
PDF
MPRA_paper_37023.pdf Download (188kB) | Preview |
Abstract
Extreme Value Theory is increasingly used in the modelling of financial time series. The non-normality of stock returns leads to the search for alternative distributions that allows skewness and leptokurtic behavior. One of the most used distributions is the Pareto Distribution because it allows non-normal behaviour, which requires the estimation of a tail index.
This paper provides a new method for estimating the tail index. We propose an automatic procedure based on the computation of successive normality tests over the whole of the distribution in order to estimate a Gaussian Distribution for the central returns and two Pareto distributions for the tails. We find that the method proposed is an automatic procedure that can be computed without need of an external agent to take the decision, so it is clearly objective.
Item Type: | MPRA Paper |
---|---|
Original Title: | An automatic procedure for the estimation of the tail index |
Language: | English |
Keywords: | Tail Index; Hill estimator; Normality Test |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General G - Financial Economics > G1 - General Financial Markets > G19 - Other G - Financial Economics > G0 - General > G00 - General |
Item ID: | 37023 |
Depositing User: | Clara I. Gonzalez |
Date Deposited: | 02 Mar 2012 13:53 |
Last Modified: | 01 Oct 2019 09:27 |
References: | Beirlant, J., Teugels, J., Vynckier, P., 1996. Practical analysis of extreme values. Tech. rep., Leuven University Press, Leuven. Bensalah, Y., 2000. Steps in applying extreme value theory to finance: A review. Working Paper 20, Bank of Canada. Danielsson, J., Hartmann, P., de Vries, C. G., January 1998. The cost of conservatism: Extreme returns, value-at-risk, and the basle multiplication factor. Risk. Drees, H., de Haan, L., Resnick, S., 2000. How to make a hill plot. The Annals of Statistics 28, 254–274. Embrechts, P., Klüppelberg, C., Mikosch, T., 1997. Modelling Extremal Events. Springer Verlag, Berlin. Embrechts, P., Resnick, S., Samorodnitsky, G., 1999. Extreme value theory as a risk management tool. North American Actuarial Journal 3, 30–41. Fama, E. F., 1963. Mandelbrot and the stable paretian hypothesis. Journal of Business 36 (4), 420–429. Fama, E. F., 1965. The behavior of stock market prices. Journal of Business 38, 34–105. Galambos, J., 1978. The Asymptotic Theory of Extreme Order Statistics. John Wiley & Sons, New York. Gnedenko, B., 1943. Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics 44, 423–453. Haan, L. D., Resnick, I. S., Rootzen, H., de Vries, C., 1989. Extremal be- havior of solutions to a stochastic difference equation with applications to arch process. Stochastic Processes and Their Applications 32, 213–224. Hill, B., 1975. A simple general approach to inference about the tail of a distribution. Annals of Statistics 3, 1163–1174. Jansen, D., de Vries, C., 1991. On the frequency of large stock returns: putting booms and busts into perspective. Review of Economics and Statis- tics 73, 18–24. Jarque, C. M., Bera, A. K., 1980. Efficient tests for normality, homoscedastic- ity and serial independence of regression residuals. Economics Letters (6), 255–259. Jenkinson, A., 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society 87, 145–158. Longin, F., 1996. The asymptotic distribution of extreme stock market re- turns. Journal of Business 69, 383–408. Mandelbrot, B., 1963. The variation of certain speculative prices. Journal of Business 36, 394–419. McCulloch, J., JAN 1997. Measuring tail thickness to estimate the stable index alpha: A critique. Journal of Business & Economic Statistics 15 (1), 74–81. Mittnik, S., Paolella, M., Rachev, S., 1998. A tail estimator for the index of the stable paretian distribution. Communications in Statistics Theory and Methods 27 (5), 1239–1262. Mittnik, S., Paolella, M. S., Rachev, S. T., 2000. Diagnosing and treating the fat tails in financial returns data. Journal of Empirical Finance (7), 389–416. Mittnik, S., Rachev, S., 1993. Modeling asset returns with alternative stable models. Econometric Reviews 12, 261–330. Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of returns. Journal of Business 53, 61–65. Pickands, J., 1975. Statistical inference using extreme order statistics. Annals of Statistics 3, 119–131. Reiss, R., Thomas, M., 1997. Statistical Analysis of Extreme Values. Birkhäuser, Basel. Resnick, S., 1997. Heavy tail modeling and teletraffic data. Annals of Statis- tics 25 (5), 1805–1869. Rothschild, M., Stiglitz, J. E., 1970. Increasing risk: I. a definition. Journal of Economic Theory 2, 225–243. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/37023 |