Czinkota, Thomas (2012): Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen.
Preview |
PDF
MPRA_paper_37072.pdf Download (984kB) | Preview |
Abstract
In financial time series analysis structural breaks indicate a fundamental change in market processes. Therefore, those breaks are of great interest for portfolio managers. Knowledge about a structural break could help managers in the orientation of their portfolio. The classical methods of testing for structural breaks are used mostly to prove mathematically what the field-researcher already expects. Usually, successful applications consist of retrospective identification of a structural break which does correspond to a well known incident. In the field of portfolio management the situation is not as clearly structured. Typically there is no single explicit incident that has to be verified. The market delivers numerous incidents every day. By using the classical methods of analysis, many structural breaks are identified. Yet, it is essential to realize, that the identification of a structural break is entirely dependent on the method used. Using methods of proof from theoretical computer science this article advocates the need to resolve contradictions between different methods of analysis. Right now, the portfolio manager does not know whether or not the driving processes in the market have changed, even if his preferred method does indicate a structural break. Therefore, current tests for structural breaks lack in decision value for portfolio managers. Whenever such situation occurs in empirical studies, there is not a problem of method, but rather the failure of an approach. The implication for research is that the classical methods of testing for structural breaks used in the field of portfolio management need not to be mathematically refined. Rather, they need to be augmented and restructured to reflect the context of the field.
Item Type: | MPRA Paper |
---|---|
Original Title: | Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen |
English Title: | The Halting Problem applied to Structural Breaks in Financial Time Series |
Language: | German |
Keywords: | Halting Problem; Structural Breaks; Financial Time Series; Portfolio Management; |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 37072 |
Depositing User: | Thomas Czinkota |
Date Deposited: | 05 Mar 2012 21:49 |
Last Modified: | 28 Sep 2019 04:38 |
References: | Andrews, D. W. K. (1993): Tests for parameter instability and structural change with unknown change point. In: Econometrica: Journal of the Econometric Society, S. 821–856. Andrews, D. W. K.; Ploberger, W. (1994): Optimal tests when a nuisance parameter is present only under the alternative. In: Econometrica 62 (6), S. 1383–1414. Ang, A.; Bekaert, G. (2002a): International asset allocation with regime shifts. In: Review of Financial Studies 15 (4), S. 1137. Ang, A.; Bekaert, G. (2002b): Regime switches in interest rates. In: Journal of Business and Economic Statistics 20 (2), S. 163–182. Bai, J.; Perron, P. (1998): Estimating and Testing Linear Models with multiple structural changes. In: Econometrica 66:1, 1998, S. 47–78. Bauwens, L.; Koop, G.; Korobilis, D.; Rombouts, J. (2011): The Contribution of Structural Break Models to Forecasting Macroeconomic Series. Chow, G. C. (1960): Tests of equality between sets of coefficients in two linear regressions. In: Econometrica: Journal of the Econometric Society, S. 591–605. Chu, C. S.J.; Stinchcombe, M.; White, H. (1996): Monitoring structural change. In: Econometrica: Journal of the Econometric Society, S. 1045–1065. Cobb, G. W. (1978): The problem of the Nile: conditional solution to a changepoint problem. In: Biometrika 65 (2), S. 243–251. Garcia, R.; Perron, P. (1996): An analysis of the real interest rate under regime shifts. In: The Review of Economics and Statistics 78 (1), S. 111–125. Grinold, R. C.; Kahn, R. N. (2000): Active portfolio management. A quantitative approach for providing superior returns and controlling risk. 2nd ed. New York: McGraw-Hill Companies. Hamilton, J. D. (1996): Specification testing in Markov-switching time-series models. In: Journal of Econometrics 70 (1), S. 127–157. Hansen, B. E. (2001): The new econometrics of structural change: Dating breaks in US labor productivity. In: The Journal of Economic Perspectives 15 (4), S. 117–128. Harvey, A. C.; Durbin, J. (1986): The effects of seat belt legislation on British road casualties: A case study in structural time series modelling. In: Journal of the Royal Statistical Society. Series A (General) 149 (3), S. 187–227. Horváth, L.; Huková, M.; Kokoszka, P.; Steinebach, J. (2004): Monitoring changes in linear models. In: Journal of Statistical Planning and Inference 126 (1), S. 225–251. Huber, C. (2000): Wendepunkte in Finanzmärkten. Prognose und Asset Allocation. Bad Soden/Ts: Uhlenbruch. Kindler, Ekkart; Manthey, Steffen (2002): Automaten, Formale Sprachen und Berechenbarkeit I. Kleiber, C.; Zeileis, A. (2004): Validating multiple structural change models: A case study. In: Technical Report / Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen 2004,34. Kuan, C. M.; Hornik, K. (1995): The generalized fluctuation test: A unifying view. In: Econometric Reviews 14 (2), S. 135–161. Leisch, F.; Hornik, K.; Kuan, C. M. (2000): Monitoring structural changes with the generalized fluctuation test. In: Econometric Theory 16 (06), S. 835–854. Nguyen, D. (2008): An empirical analysis of structural changes in emerging market volatility. In: Economics Bulletin 6 (10), S. 1–10. Perron, P. (1989): The great crash, the oil price shock, and the unit root hypothesis. In: Econometrica 57 (6), S. 1361–1401. Pesaran, M. H.; Timmermann, A. (2002): Market timing and return prediction under model instability. In: Journal of Empirical Finance 9 (5), S. 495–510. Pesaran, M. H.; Timmermann, A. (2004): How costly is it to ignore breaks when forecasting the direction of a time series? In: International Journal of Forecasting 20 (3), S. 411–425. Pesaran, M. H.; Pettenuzzo, D.; Timmermann, Allan (2004): Forecasting Time Series Subject to Multiple Structural Breaks. Stock, J. H.; Watson, M. W. (1996): Evidence on structural instability in macroeconomic time series relations. In: Journal of Business & Economic Statistics 14 (1), S. 11–30. Turing, A. (2004): On Computable Numbers, with an Application to the Entscheidungs problem, 1936. In: The essential Turing: seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life, plus the secrets of Enigma, S. 58. Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. (2002): strucchange: An R package for testing for structural change in linear regression models. In: Journal of Statistical Software 7 (2), S. 1–38. Zivot, E.; Andrews, D. W. K. (1992): Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. In: Journal of Business & Economic Statistics 10 (3), S. 251–270. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/37072 |
Available Versions of this Item
- Das Halteproblem bei Strukturbrüchen in Finanzmarktzeitreihen. (deposited 05 Mar 2012 21:49) [Currently Displayed]