Logo
Munich Personal RePEc Archive

Forecasting Value-at-Risk with time-varying variance, skewness and kurtosis in an exponential weighted moving average framework

Gabrielsen, A. and Zagaglia, Paolo and Kirchner, A. and Liu, Z. (2012): Forecasting Value-at-Risk with time-varying variance, skewness and kurtosis in an exponential weighted moving average framework.

[thumbnail of MPRA_paper_39294.pdf]
Preview
PDF
MPRA_paper_39294.pdf

Download (1MB) | Preview

Abstract

This paper provides an insight to the time-varying dynamics of the shape of the distribution of financial return series by proposing an exponential weighted moving average model that jointly estimates volatility, skewness and kurtosis over time using a modified form of the Gram-Charlier density in which skewness and kurtosis appear directly in the functional form of this density. In this setting VaR can be described as a function of the time-varying higher moments by applying the Cornish-Fisher expansion series of the first four moments. An evaluation of the predictive performance of the proposed model in the estimation of 1-day and 10-day VaR forecasts is performed in comparison with the historical simulation, filtered historical simulation and GARCH model. The adequacy of the VaR forecasts is evaluated under the unconditional, independence and conditional likelihood ratio tests as well as Basel II regulatory tests. The results presented have significant implications for risk management, trading and hedging activities as well as in the pricing of equity derivatives.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.