Pivato, Marcus (2012): Multiutility representations for incomplete difference preorders.
Preview |
PDF
MPRA_paper_41182.pdf Download (366kB) | Preview |
Abstract
A ``difference preorder'' is a (possibly incomplete) preorder on a space of state changes (rather than the states themselves); it encodes information about preference intensity, in addition to ordinal preferences. We find necessary and sufficient conditions for a difference preorder to be representable by a family of cardinal utility functions which take values in linearly ordered abelian groups. This has applications to interpersonal comparisons, social welfare, and decisions under uncertainty.
Item Type: | MPRA Paper |
---|---|
Original Title: | Multiutility representations for incomplete difference preorders |
Language: | English |
Keywords: | Preference intensity; cardinal utility; linearly ordered abelian group; social welfare; uncertainty |
Subjects: | D - Microeconomics > D8 - Information, Knowledge, and Uncertainty > D81 - Criteria for Decision-Making under Risk and Uncertainty D - Microeconomics > D6 - Welfare Economics > D60 - General |
Item ID: | 41182 |
Depositing User: | Marcus Pivato |
Date Deposited: | 11 Sep 2012 11:23 |
Last Modified: | 29 Sep 2019 10:27 |
References: | Alt, F., 1936. Uber die messbarkeit des nutzens. Zeitschrift fur Nationalokonomie VII (2), 161–169, reprinted as Alt (1971). Alt, F., 1971. On the measurability of utility. In: Chipman, J. S., Hurwicz, L., Richter, M. K., Son- nenschein, H. F. (Eds.), Preferences, Utility, Demand: A Minnesota symposium. Harcourt Brace Jo- vanovich, reprint of Alt (1936), translated by Sigfried Schach. Basu, K., 1982. Determinateness of the utility function: revisiting a controversy of the thirties. Review of Economic Studies 49, 307–311. Camacho, A., 1980. Approaches to cardinal utility. Theory and Decision 12 (4), 359–379. Camerer, C., 1995. Individual decision making. In: Kagel, J., Roth, A. (Eds.), Handbook of Experimental Economics. Elsevier. Davidson, D., Marschak, J., 1956. Experimental tests of stochastic decision theory. In: Churchman, C., Ratoosh, P. (Eds.), Measurement: definitions and theories. Wiley, New York. Debreu, G., 1958. Stochastic choice and cardinal utility. Econometrica 26, 440–444. Doignon, J. P., Falmagne, J. C., 1974. Difference measurement and simple scalability with restricted solvability. J. Mathematical Psychology 11, 473–499. Dushnik, B., Miller, E. W., 1941. Partially ordered sets. Amer. J. Math. 63, 600–610. Evren,O.,Ok,E.A.,2011.Onthemulti-utilityrepresentationofpreferencerelations.J.Math.Econom. 47 (4-5), 554–563. Fuchs, L., 2011. Partially ordered algebraic systems. Dover, New York. Kaminski, B., 2007. On quasi-orderings and multi-objective functions. European J. Oper. Res. 177 (3), 1591–1598. Knoblauch, V., 2006. Continuously representable Paretian quasi-orders. Theory and Decision 60 (1), 1–16. Kobberling, V., 2006. Strength of preference and cardinal utility. Econom. Theory 27 (2), 375–391. Krantz, D. H., Luce, R. D., Suppes, P., Tversky, A., 1971. Foundations of measurement. Academic Press, New York, vol. 1: Additive and polynomial representations. Kristof, W., 1967. A foundation of interval scale measurement. Research Bulletin RB-67-22, Educational Testing Service, Princeton. Levin, V. L., 1983. Continuous utility theorem for closed preorders on a metrizable σ-compact space. Dokl. Akad. Nauk SSSR 273 (4), 800–804. Mandler, M., 2005. Incomplete preferences and rational intransitivity of choice. Games Econom. Behav. 50 (2), 255–277. Mandler, M., 2006. Cardinality versus ordinality: A suggested compromise. The American Economic Review 96 (4), 1114–1136. Ok, E. A., 2002. Utility representation of an incomplete preference relation. J. Econom. Theory 104 (2), 429–449. Pivato, M., 2012a. Additive representation of separable preferences over infinite products. (preprint) http://mpra.ub.uni-muenchen.de/28262. Pivato, M., 2012b. Social choice with approximate interpersonal comparison of welfare gains I: Utilitarian models, http://mpra.ub.uni-muenchen.de/32252/. Pivato, M., 2012c. Social choice with approximate interpersonal comparison of welfare gains II: Non- utilitarian models, http://mpra.ub.uni-muenchen.de/32252/. Rabin, M., 1998. Psychology and economics. J. Econ. Lit. 36, 11–46. Shapley, L., 1975. Cardinal utility comparisons from intensity comparisons. Tech. Rep. R-1683-PR, Rand Corporation. Sprumont, Y., 2001. Paretian quasi-orders: the regular two-agent case. J. Econom. Theory 101 (2), 437– 456. Suppes, P., Zinnes, J., 1963. Basic measurement theory. In: Luce, R., Bush, R., Galanter, E. (Eds.), Handbook of Mathematical Psychology. Vol. I. Wiley, pp. 1–76. Szpilrajn, E., 1930. Sur l’extension de l’ordre partiel. Fundamenta Matematicae 16, 386–389. Wakker, P., 1988. The algebraic versus the topological approach to additive representations. J. Math. Psych. 32 (4), 421–435. Wakker, P. P., 1989. Additive representations of preferences. Kluwer, Dordrecht. Yılmaz, O., 2008. Utility representation of lower separable preferences. Math. Social Sci. 56 (3), 389–394. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/41182 |