Lin, Y. Joseph and Tian, Guoqiang (1993): Minimax inequality equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz Theorem. Published in: Applied Mathematics and Optimization , Vol. 28, (1993): pp. 173-179.
Preview |
PDF
MPRA_paper_41220.pdf Download (333kB) | Preview |
Abstract
The purpose of this note is to give further generalizations of the Ky Fan minimax inequality by relaxing the compactness and convexity of sets and the quasi-concavity of the functional and to show that our minimax inequalities are equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz (FKKM) theorem and a modified FKKM theorem given in this note.
Item Type: | MPRA Paper |
---|---|
Original Title: | Minimax inequality equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz Theorem |
Language: | English |
Keywords: | The minimax inequality, Variational inequalities, The FKKM theorem, Noncompact and nonconvex sets, Equivalence |
Subjects: | D - Microeconomics > D6 - Welfare Economics > D63 - Equity, Justice, Inequality, and Other Normative Criteria and Measurement |
Item ID: | 41220 |
Depositing User: | Guoqiang Tian |
Date Deposited: | 13 Sep 2012 22:47 |
Last Modified: | 27 Sep 2019 13:19 |
References: | 1. Allen G (1977) Variational inequalities, complementarity problems, and duality theorems. J Math Anal Appl 58:1-10 2. Aubin JP (1979) Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam 3. Aubin JP, Ekeland I (1984) Applied Nonlinear Analysis. Wiley, New York 4. Ben-El-Mechaickh H, Deguire P, Granas A (1982) Points fixes et coincidences pour les applications multivoques (applications de Ky Fan). C R Acad Sci Paris S6r I Math 295:337-340 5. Ben-EI-Mechaickh H, Deguire P, Granas A (1982) Points fixes et coincidences pour les fonctions multivoques II (applications de type q~ et q~). C R Acad Sci Paris Ser I Math 295:381-384 6. Border KC (1985) Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University press, Cambridge 7. Fan K (1969) Extensions of two fixed point theorems of F. E. Browder. Math Z 112:234-240 8. Fan K (1972) A minimax inequality and application. In: Inequalities, vol 3 (Shisha O, ed). Academic Press, New York, pp 103-113 9. Fan K (1979) Fixed-point and related theorems for non-compact sets. In: Game Theory and Related Topics (Moeschlin O, Pallaschke D, eds). North-Holland, Amsterdam, pp 151-156 10. Fan K (1984) Some properties of convex sets related to fixed points theorems. Math Ann 266:519-537 11, Hartman PT, Stampacchia G (1966) On some nonlinear ecliptic differential functionalequations. Acta Math 115:153-188 12. Knaster B, Kuratowski C, Mazurkiewicz S (1929) Ein Beweis des Fixpunktsatzes fiir n-demensionale Simpliexe. Fund Math 14:132-137 13. Lassonde M (1983) On the use of KKM multifunctions in fixed point theory and related topics. J Math Anal Appl 97:151-201 14. Mosco U (1976) Implicit variational problems and quasi-variational inequalities. Lecture Notes in Mathematics, vol 543. Springer-Verlag, Berlin, pp 83-156 15. Tarafdar E (1987) A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem. J Math Anal Appl 128:475-479 16. Tian G (1991) Fixed points theorems for mappings with non-compact and non-convex domains. J Math Anal Appl 158:160-167 17. Tian G (1992) Existence of equilibrium in abstract economies with discontinuous payoffs and non-compact choice spaces. J Math Econom 21:379-388 18. Tian G, Zhou J (1991) Quasi-variational inequalities with non-compact sets.-J Math Anal Appl 160:583-595 19. Zhou J, Chen G (1988) Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. J Math Anal Appl 132:213-225 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/41220 |