Logo
Munich Personal RePEc Archive

Continuous invertibility and stable QML estimation of the EGARCH(1,1) model

Wintenberger, Olivier (2013): Continuous invertibility and stable QML estimation of the EGARCH(1,1) model.

[thumbnail of MPRA_paper_46027.pdf]
Preview
PDF
MPRA_paper_46027.pdf

Download (669kB) | Preview

Abstract

We introduce the notion of continuous invertibility on a compact set for volatility models driven by a Stochastic Recurrence Equation (SRE). We prove the strong consistency of the Quasi Maximum Likelihood Estimator (QMLE) when the optimization procedure is done on a continuously invertible domain. This approach gives for the first time the strong consistency of the QMLE used by Nelson (1991) for the EGARCH(1,1) model under explicit but non observable conditions. In practice, we propose to stabilize the QMLE by constraining the optimization procedure to an empirical continuously invertible domain. The new method, called Stable QMLE (SQMLE), is strongly consistent when the observations follow an invertible EGARCH(1,1) model. We also give the asymptotic normality of the SQMLE under additional minimal assumptions.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.