Wintenberger, Olivier (2013): Continuous invertibility and stable QML estimation of the EGARCH(1,1) model.
Preview |
PDF
MPRA_paper_46027.pdf Download (669kB) | Preview |
Abstract
We introduce the notion of continuous invertibility on a compact set for volatility models driven by a Stochastic Recurrence Equation (SRE). We prove the strong consistency of the Quasi Maximum Likelihood Estimator (QMLE) when the optimization procedure is done on a continuously invertible domain. This approach gives for the first time the strong consistency of the QMLE used by Nelson (1991) for the EGARCH(1,1) model under explicit but non observable conditions. In practice, we propose to stabilize the QMLE by constraining the optimization procedure to an empirical continuously invertible domain. The new method, called Stable QMLE (SQMLE), is strongly consistent when the observations follow an invertible EGARCH(1,1) model. We also give the asymptotic normality of the SQMLE under additional minimal assumptions.
Item Type: | MPRA Paper |
---|---|
Original Title: | Continuous invertibility and stable QML estimation of the EGARCH(1,1) model |
Language: | English |
Keywords: | Invertible models, volatility models, quasi maximum likelihood, strong consistency, asymptotic normality, exponential GARCH, stochastic recurrence equation. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 46027 |
Depositing User: | Dr Olivier Wintenberger |
Date Deposited: | 10 Apr 2013 09:34 |
Last Modified: | 01 Oct 2019 15:30 |
References: | Alsmeyer, G. (2003) On the Harris recurrence and iterated random Lipschitz fonctions and related convergence rate results. J. Theor. Probab. 16, 217--247. Bardet, J. and Wintenberger, O. (2009) Asymptotic normality of the quasi maximum likelihood estimator for multidimensional causal processes, Ann. Statist. 37, 2730--2759. Basrak, B., Davis, R.A. and Mikosch. T. (2002) Regular variation of GARCH processes. Stoch. Proc. Appl. 99, 95--116. Berkes, I. and Horváth, L. (2004) The efficiency of the estimators of the parameters in GARCH processes., Ann. Statist. 32(2), 633--655. Berkes, I.; Horvath, L. and Kokoszka, P. (2003) GARCH processes: structure and estimation. Bernoulli 9, 201--227. Billingsley, P. (1999) Convergence of Probability Measures, John Wiley and Sons Inc., New York. Bollerslev, T. P. (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307--327. Bougerol, P. (1993) Kalman filtering with random coefficients and contractions. SIAM J. Control and Optimization 31, 942--959. Bougerol, P. and Picard, N. (1992) Stationarity of GARCH processes and of some nonnegative time series. J. Econometrics 52, 115--127. Brandt, M. W. and Jones, C. S. (2006) Volatility forecasting with range-based EGARCH models Journal of Business and Economic Statistics 24, 470--486. Cont, R. (2001) Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1, 223--236. Demos, A. and Kyriakopoulou, D. (2010) Bias correction of ML and QML estimators in the EGARCH(1,1) model. Preprint. Elton, J. H. (1990) A multiplicative ergodic theorem for Lipschitz maps. Stoch. Proc. Appl. 34, 39--47. Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50(4), 987--1007. Francq, C., Wintenberger, O. et Zakoian, J.-M. (2012) GARCH models without positivity constraints: Exponential or Log GARCH? Preprint. Francq, C. and Zakoian, J. (2004), Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli 10, 605--637. Francq, C. et Zakoian, J.-M. (2010) GARCH Models - Structure, Estimation and Finance Applications. John Wiley. Granger, C. and Andersen, A. (1978) On the invertibility on time series models. Stoch Proc. and their Appl. 8, 87--92. Harvey, A. C. and Chakravarty, T. (2008) Beta-t-(E)GARCH. Preprint. He, C., Terasvirta, T. and Malmsten, H. (2002) Moment structure of a family of first-order exponential GARCH models, Econom. Theory 18(04), 868--885. Jeantheau, T.}\ (1998) Strong consistency of estimation for multivariate ARCH models. Econom. Theory 14, 70--86. Jensen, S. T. and A. Rahbek} (2004) Asymptotic Inference for Nonstationary GARCH. Econometric Theory 20, 1203--1226. Kingman, J.F.C. (1973) Subadditive ergodic theory. Ann. Probab. 6, 883--909. Krengel, U. (1985) Ergodic Theorems. de Gruyter, Berlin. Letac, G. (1986) A contraction principle for certain Markov chains and its applications. random matrices and their applications. Proceedings of AMS-IMS-SIAM Joint Summer Research Conference 1984, 50, 263--273. Meyn, S.P. and Tweedie, R.L. (1993) Markov Chains and Stochastic Stability. Springer, London. Mikosch, T. and Rezapour, M. (2012) Stochastic volatility models with possible extremal clustering. Bernoulli To appear. Nelson, D. B. (1990) Stationarity and persistence in the GARCH(1,1) model. Econom. Theory 6, 318-334. Nelson, D. B. (1991), Conditional Heteroskedasticity in Asset Returns : A New Approach. Econometrica 59, 347--370. Rosenblatt, M. (1956) A central limit Theorem and a strong mixing condition, Proc. Nat. Acad. Sci., U.S.A. 42,43-47. Shao, Q-M. (1993). Complete convergence for $\alpha$-mixing sequences. Statist. Probab. Letters 16, 279--287. Sorokin, A. (2011) Non-invertibility in some heteroscedastic models. Arxiv preprint 1104.3318. Straumann, D. (2005) Estimation in Conditionally Heteroscedastic Time Series Models. Springer, Vol. 181, New York. Straumann, D. and Mikosch, T. (2006) Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equation approach Ann. Statist. 34, 2449--2495. Sucarrat, G. and Escribano, A. (2010) The power log-GARCH model. Preprint. Tong, H. (1993) Non-Linear Time Series, A Dynamical System Approach, Oxford Science Publications, Oxford. Tweedie, R.L. (1998) Invariant measures for Markov chains with no irreducibility Assumptions. Journal of Applied Probability 25, 275--285. Vrontos, I. D., Dellaportas, P. and Politis, D. N. (2000) Full Bayesian Inference for GARCH and EGARCH Models. Journal of Business and Economic Statistics 18(2), 187--98. Zaffaroni, P. (2009) Whittle estimation of EGARCH and other exponential volatility models J. Econometrics 151, 190--200. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/46027 |