Logo
Munich Personal RePEc Archive

Comparative study of static and dynamic neural network models for nonlinear time series forecasting

Abounoori, Abbas Ali and Mohammadali, Hanieh and Gandali Alikhani, Nadiya and Naderi, Esmaeil (2012): Comparative study of static and dynamic neural network models for nonlinear time series forecasting.

[thumbnail of MPRA_paper_46466.pdf]
Preview
PDF
MPRA_paper_46466.pdf

Download (350kB) | Preview

Abstract

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis different types of these models have been used in forecasting. Now, there is this question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison between static and dynamic neural network models in forecasting the return of Tehran Stock Exchange (TSE) index in order to find the best model to be used for forecasting this series (as a nonlinear financial time series). The data were collected daily from 25/3/2009 to 22/10/2011. The models examined in this study included two static models (Adaptive Neuro-Fuzzy Inference Systems or ANFIS and Multi-layer Feed-forward Neural Network or MFNN) and a dynamic model (nonlinear neural network autoregressive model or NNAR). The findings showed that based on the Mean Square Error and Root Mean Square Error criteria, ANFIS model had a much higher forecasting ability compared to other models.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.