Andrea, Loi and Stefano, Matta (2006): Evolution paths on the equilibrium manifold.
Preview |
PDF
MPRA_paper_4694.pdf Download (132kB) | Preview |
Abstract
In a pure exchange smooth economy with fixed total resources, we de- fine the length between two regular equilibria belonging to the equilibrium manifold as the number of intersection points of the evolution path connecting them with the set of critical equilibria. We show that there exists a minimal path according to this definition of length.
Item Type: | MPRA Paper |
---|---|
Institution: | University of Cagliari |
Original Title: | Evolution paths on the equilibrium manifold |
Language: | English |
Keywords: | Equilibrium manifold; regular economies; critical equilibria; catastrophes; Jordan-Brouwer separation theorem |
Subjects: | D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D51 - Exchange and Production Economies D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D50 - General |
Item ID: | 4694 |
Depositing User: | Stefano Matta |
Date Deposited: | 03 Sep 2007 |
Last Modified: | 03 Oct 2019 05:00 |
References: | [1] Y. Balasko, The graph of the Walras correspondence, Econometrica, 43 (1975), 907-912. [2] Y. Balasko, Economic equilibrium and catastrophe theory: an introduction, Econo- metrica, 46 (1978), 557-569. [3] Y. Balasko, Geometric approach to equilibrium analysis, J. of Mathematical Eco- nomics 6 (1979), 217-228. [4] Y. Balasko, Foundations of the Theory of General Equilibrium, Academic Press, Boston (1988). [5] Y. Balasko, The set of regular equilibria, J. of Economic Theory 58 (1992), 1-8. [6] E. Dierker, Regular Economies, Chap.17 in Handbook of Mathematical Economics, vol.I I, edited by K. Arrow and M. Intriligator. Amsterdam: North-Holland(1982). [7] V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Englewood Cliffs (1974). [8] E.L. Lima, The Jordan-Brouwer separation theorem for smooth hypersurfaces, Am. Math. Monthly 95 (1988), 39-42. [9] A. Loi, S. Matta, A Riemannian metric on the equilibrium manifold: the smooth case, Economics Bulletin 4 No. 30 (2006), 1-9. [10] S. Matta, A Riemannian metric on the equilibrium manifold, Economics Bulletin 4 No. 7 (2005), 1-7. [11] H. Samelson, Orientability of Hypersurfaces in Rn , Proc. Am. Math. Soc. 22 (1969), 301-302. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/4694 |